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Abstract. We estimate a Markov-switching mixture of two familiar macroeconomic

models: a richly parameterized DSGE model and a corresponding BVAR model. We

show that the Markov-switching mixture model dominates both individual models

and improves the fit considerably. Our estimation indicates that the DSGE model

plays an important role only in the late 1970s and the early 1980s. We show how

to use the mixture model as a data filter for estimation of the DSGE model when

the BVAR model is not identified. Moreover, we show how to compute the impulse

responses to the same type of shock shared by the DSGE and BVAR models when the

shock is identified in the BVAR model. Our exercises demonstrate the importance of

integrating model uncertainty and parameter uncertainty to address potential model

misspecification in macroeconomics.

I. Introduction

In this paper we study and estimate a Markov-switching mixture of two familiar

macroeconomic models: a medium-scale linearized dynamic stochastic general equi-

librium (DSGE) model and a Bayesian vector autoregression (BVAR) model. This
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exercise is motivated by policy analysis dealing with situations where there are mul-

tiple models and each model may be misspecified. Practical policy discussions often

proceed with combining the implications from different models in an informal way. For

our exercise to be econometrically coherent and practically implementable, we build on

the recent work of Geweke and Amisano (2011) by estimating a time-varying mixture

of these two medium-scale macroeconomic models in which the time variation in the

weights assigned to the two models follows a Markov-switching process. Our objective

is to explore empirical implications of such a Markov-switching mixture model using a

standard set of U.S. time series data.

Geweke and Amisano (2011) propose an optimal pool of alternative models, where

the pool combines predictive densities of alternative models. Predictive densities of

each model in the pool, as well as the parameters for any parametric model, are taken

as given. The optimal pool concerns the estimation of model weights only.

We extend Geweke and Amisano (2011)’s approach in two dimensions. First, we

study a formal mixture of heterogenous models by estimating the parameters and the

combining weights simultaneously. Second, we allow model weights to switch between

two regimes to explore the possibility that the importance of a particular model may

change over time. To make our exercise relevant and at the same time feasible to

implement, we focus on only two macroeconomic models that are often used in the

literature.

The DSGE and BVAR models studied in this paper are sufficiently heterogenous

to yield different economic implications. The DSGE model is tightly parameterized

around carefully chosen economic structures, whereas the BVAR model is loosely pa-

rameterized with relatively few theoretical preconceptions. The mixture of these two

models enables us to address both model uncertainty and parameter uncertainty jointly.

The Markov-switching feature allows us to study two possible regimes and to determine

when model weights change.

Our application yields the following key findings. First, the Markov-switching mix-

ture model dominates both the DSGE and BVAR models according to the marginal
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data density (MDD) measure.1 The estimation of the MDD is computationally de-

manding, but it is necessary for gauging the fit of the Markov-switching mixture model.

For the completeness of our analysis, we also compute the MDD for the mixture model

with constant weights. We find that much of the improvement in model fit comes

from the constant-weight mixture model. However, allowing regime-dependent model

weights not only improves the fit further but also enables us to identify the periods in

which the DSGE model or the BVAR model plays an important role.

Second, the estimated posterior probabilities of two regimes reveal that in one regime

the DSGE model plays an important role only in the late 1970s and the early 1980s,

with the estimated model weight being 0.43. The BVAR model weight is 0.57 in the

same regime. In the other regime the BVAR model dominates the DSGE model. This

regime covers all other periods than the late 1970s and the early 1980s, including the

latest three recessions. Thus, only in certain periods can the DSGE model become an

important factor for the improvement in model fit.

Third, the estimated Markov-switching mixture model is used to filter the data for

estimation of the DSGE model. Since the regime in which the BVAR model dominates

covers 76% of the sample, the mixture model effectively discounts the observations

in this regime when the DSGE parameters are estimated. Moreover, in the periods

when the DSGE model weight is significant, the data is partially discounted due to

the continuing influence of the BVAR model. As a result, the estimates of the DSGE

parameters differ considerably from those where the DSGE model is estimated alone

with the full sample. We use the impulse responses to a capital depreciation shock in

the DSGE model as an example to show that both the magnitude and the uncertainty

about these impulse responses are substantially larger than those where the DSGE

model is estimated alone over the full sample.

Fourth, we show how to compute the impulse responses to the same type of shock

when both individual models in the mixture are structural. In our case, we set up the

BVAR model as a structural model to identify a shock to monetary policy. Since the

1The term “marginal data density” used in the macroeconomic literature is the same concept as

the “marginal likelihood” used in the statistics literature. That is, the MDD is an integral of the prior

density times the likelihood function, with both the prior and the likelihood being proper probability

density functions. When the two models are compared, the Bayes factor defined as the ratio of the

two MDDs is often used to determine which model fits to the data better.
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responses conditional on each model are tightly estimated, economic implications about

the effect of a monetary policy shock differ from the DSGE model to the BVAR model.

Once we recognize that each model may be misspecified and take model uncertainty

into account, we show that the estimate of the effect of a monetary policy shock is

smaller, but the probability bands around the estimate are larger than what is implied

from the BVAR model. We discuss how the effect of a monetary policy shock changes

from one regime to the other. Thus, our application illustrates an effective way of using

the Markov-switching mixture model for structural analysis.

The rest of the paper is organized as follows. Section II provides a brief literature

review. In Section III we lay out a general framework. In Section IV we apply the

general framework to our specific case study and estimate a Markov-switching mixture

model of the DSGE and BVAR models. Section V reports different measures of fit

for the DSGE model, the BVAR model, the simple mixture model, and the Markov-

switching mixture model. In Section VI we show how to use the estimated Markov-

switching mixture model as a data filter for estimating the impulse responses to a

capital depreciation shock in the DSGE model. In Section VII we show how to perform

a full structural analysis when a monetary policy shock is identified in the BVAR model.

Concluding remarks are made in Section VIII.

II. Literature review

The key contribution of this paper is an application of a general Markov-switching

mixture framework to two medium-scale macroeconomic models. The general frame-

work consists of two components. As there exists a large strand of literature on each

component, we focus on only a small handful of references that are most relevant to this

paper. The first component is a simple mixture of alternative models. The predictive

density in the mixture is a linear combination of predictive densities of individual mod-

els. The idea of combining point forecasts can be traced back to Bates and Granger

(1969) and Diebold (1991). In a recent work, Geweke and Amisano (2011) propose a

method of pooling individual models by combining predictive densities instead of point

forecasts.2 Fisher and Waggoner (2010) extend a pool of models emphasized by Geweke

2See Geweke and Amisano (2011) for a long list of other references on forecast combinations as well

as on predictive distributions.
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and Amisano (2011) to a mixture of models and argue for the Bayesian approach to

estimation of the mixture model.

The second component is a Markov-switching process applied to model weights. An

earlier paper by Harrison and Stevens (1976) introduces a Markov process in a mixture

model with an emphasis on changes in the noise and disturbance matrices. West

and Harrison (1997) allow model weights to change over time in dynamic forecasting

exercises. The modern analysis of Markov-switching dynamic models can be found in,

for example, Hamilton (1989), Chib (1996), Kim and Nelson (1999), and Frühwirth-

Schnatter (2006).

The literature on model misspecification is large, and different approaches have been

taken to confront this issue. Del Negro and Schorfheide (2004) address potential DSGE

model misspecification by introducing the prior implied by a DSGE model into a BVAR

model. Further discussions about using the DSGE-VAR approach and about how it is

related to Ingram and Whiteman (1994) can be found in Del Negro and Schorfheide

(2009) and Del Negro and Schorfheide (Forthcoming). Hansen and Sargent (2001) and

Brock, Durlauf, and West (2003) provide the robustness-control framework to address

model misspecification. Using this idea, Cogley and Sargent (2005) study an economy

in which agents, facing model uncertainty, compute the posterior odds ratios over three

models and make decisions by Bayesian model averaging. Our analysis centers on a

Markov-switching mixture of the DSGE and BVAR models and is mostly related to

Geweke and Amisano (2011).

III. A general econometric framework

To integrate model uncertainty and parameter uncertainty, we use the Bayesian ap-

proach. In our general setup we allow the weights in a linear combination of predictive

densities of individual heterogenous models to vary across regimes. We assume that

there are a total of n models (Mi for i = 1, . . . , n) in the study and that the observed

data at time t, yot , is generated from the following predictive density:

p
(
yt | Y

o
t−1,Θ, Q, w, st

)
=

n∑

i=1

wi,stp
(
yt | Y

o
t−1,Θi,Mi

)
,
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where p
(
yt | Y

o
t−1,Θi,Mi

)
is the predictive density of yt conditional on model i, its

parameters, and the observed data up to time t−1, Y o
t−1 =

{
yo1, · · · , y

o
t−1

}
. The super-

script “o” denotes the observed data. The notation Θi represents a vector of parameters

for model i. The notation “Mi” in the predictive density function p
(
yt | Y

o
t−1,Θi,Mi

)

is not redundant because in the end we compare the marginal data density of model i,

denoted by p (Y o
T | Mi), with the marginal data density of the mixture model, denoted

by p (Y o
T ).

The regime-dependent weight, wi,st ≥ 0, is assigned to model i with
∑n

i=1wi,st = 1.3

The regime variable st is an unobservable state and follows a Markov process with the

transition matrix Q = [qk,j], where qk,j = Prob [st = k | st−1 = j] for k, j = 1, . . . , h.

The total number of regimes is h.

Grouping all the parameters together, we have

Θ = {Θ1, · · · ,Θn}, w = {wi,k} for k = 1, . . . , h, i = 1, . . . , n.

Since st is unobservable, we integrate out st to obtain the conditional likelihood as

p
(
yt | Y

o
t−1,Θ, Q, w

)
=

h∑

st=1

[
p
(
yt | Y

o
t−1,Θ, Q, w, st

)
p
(
st | Y

o
t−1,Θ, Q, w

)]
.

The log likelihood function is thus given by

log p (Y o
T |Θ, Q, w) =

T∑

t=1

log p
(
yot | Y

o
t−1,Θ, Q, w

)
, (1)

where the parameters Θ, Q, and w are to be estimated jointly.

A special case of our Markov-switching framework is a mixture model with constant

weights. In model comparison we include this simple mixture model to gauge how

important a convex combination of predictive densities is in improving model fit.

Given the prior p (Θ, Q, w) and the likelihood function (1), we form the posterior

density function proportional to the product of the likelihood function and the prior

density function:

p (Θ, Q, w | Y o
T ) ∝ p (Y o

T | Θ, Q, w) p (Θ, Q, w) . (2)

3In an earlier draft, we impose the restriction that one of the weights wi,st is equal to 1 and others

are set to 0. The restriction, similar to the approach taken by McCulloch and Tsay (1994), reflects the

idea that only one model is operative at a time. Our current setup is more general and encompasses

the special case in which one of the weights wi,st is restricted to be 1.
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IV. Application

We apply the general framework presented in Section III to two types of widely used

models, a medium-scale DSGE model and a BVAR model. Since n = 2 in our case,

we adopt the notation i ∈ {DSGE,BV AR}. We focus on only two regimes, so that

h = 2.

The DSGE model, based on Liu, Waggoner, and Zha (2011), is built on a combina-

tion of Chari, Kehoe, and McGrattan (2000), Altig, Christiano, Eichenbaum, and Linde

(2004), and Smets and Wouters (2007).4 The DSGE model is fit to eight quarterly vari-

ables: quarterly growth of real per capita GDP (∆ log Y Data
t ), quarterly growth of real

per capita consumption (∆ logCData
t ), quarterly growth of real per capita investment

in capital goods unit (∆ log IData
t ), quarterly growth of the real wage (∆ logwData

t ),

the quarterly GDP-deflator inflation rate (πData
t ), quarterly growth of per capita hours

(∆ logLData
t ), the federal funds rate (FFRData

t ), and quarterly growth of investment-

specific technology (∆ logQData
t ) as measured by the inverse of the relative price of

investment. A detailed description of the data is given in Appendix A. The data in

the initial four quarters from 1960:I to 1960:IV are used to obtain the initial condition

at 1961:I for the Kalman filter. Thus, the effective sample used for model evaluation

is from 1961:I to 2010:II.

The BVAR model has the same eight variables as the DSGE model; and it has four

lags from 1960:I to 1960:IV, so that the effective sample is also from 1961:I to 2010:II.

We use the standard BVAR model with the Sims and Zha (1998) prior.5

In estimation of the Markov-switching mixture of the DSGE and BVAR models, we

maintain the assumption that agents in the DSGE model form their expectations with-

out accounting for model uncertainty. To focus on the discussion of regime-dependent

weights and their posterior probabilities, we leave to Appendix D the presentation and

discussion of the prior distribution and the posterior estimates of DSGE parameters in

4A detailed description of the model is given in Appendix D.
5Using the notation of Sims and Zha (1998), µ1 = µ2 = µ3 = µ4 = 1, where µ1 controls overall

tightness of the random walk prior, µ2 controls relative tightness of the random walk prior on the

lagged coefficients, µ3 controls relative tightness of the prior on the constant term, and µ4 controls

tightness of the prior that dampens the erratic sampling effects on lag coefficients (lag decay).
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our Markov-switching mixture model. The transition matrix for the Markov process is

Q =

[
q1,1 q1,2

q2,1 q2,2

]
,

where
∑2

s=1 qs,k = 1 for k = 1, 2. The prior density for Q is a Dirichlet probability

density:

p(Q) ∝
2∑

s,k=1

(qs,k)
(αs,k−1) ,

where αs,k > 0. Following Sims, Waggoner, and Zha (2008), we express a prior belief

that the average duration for each regime is between six and seven quarters. The

belief implies that the expected value of the probability of staying in the same regime

is Eqs,s = 8.5 and the corresponding hyperparameter value is αs,s = 5.6667. The

hyperparameter αs,k for s 6= k is set to 1.0 to allow for the possibility that the regime

may be absorbent (i.e., qs,s = 1).6 The prior for model weights in each regime is also

of Dirichlet form. Table 1 summarizes the prior distributions of both weights and

transition parameters.

Given the prior and the data, the estimation and inference strategy is as follows:

• Obtain the estimates by maximizing the posterior density (2). We use the

blockwise optimization algorithm proposed by Sims, Waggoner, and Zha (2008).

• Break the model parameters into several blocks and use the Gibbs sampler

across blocks to simulate the Monte Carlo Markov Chain (MCMC) draws for

statistical inference.

• Within each block of parameters during the Gibbs sampling steps, use the

Metropolis algorithm.

• Use the MCMC draws from the posterior distribution to simulate impulse re-

sponses.

• Use the MCMC draws to compute marginal data densities.

Appendix C provides details of implementation at each step of our estimation and

simulation approach. Note that since the likelihood is of very high dimension, the

MCMC simulations will not deliver a point that is even close to the posterior mode.

Moreover, the posterior mode serves as an important benchmark for selecting a good

starting point for our MCMC simulator (see Appendix C for detailed discussions).

6Note that the variance of the prior is a function of αs,k.
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Table 1. Prior distributions of weights and transition parameters

Parameters Description Distributions Hyperparameters

α1,i α2,i

w1,s, w2,s Weights in the sth regime Dirichlet 2.0 2.0

α1,1 α2,1

q1,1, q2,1 Transition from the first regime Dirichlet 5.6667 1.0

α1,2 α2,2

q1,2, q2,2 Transition from the second regime Dirichlet 1.0 5.6667

Table 2 reports the posterior estimates and the 90% probability intervals for weights

and transition parameters. The probability intervals are computed from our MCMC

posterior draws. For each posterior draw, we label the regimes so that the weight of the

DSGE model in the first regime is less than that in the second regime. This label nor-

malization is a computationally efficient way to approximate the Wald normalization

discussed in Hamilton, Waggoner, and Zha (2007); and it is similar to the normal-

ization proposed by Sims and Zha (2006) in which the smoothed probabilities of a

regime for each posterior draw of the model parameters match closest to the smoothed

probabilities of that regime based on the posterior estimates of the parameters.

In the first regime, the BVAR model dominates the DSGE model; the DSGE model

receives almost no weight at the posterior mode (even the upper bound of the 90%

probability interval gives the weight of only 8%). In the second regime, however, over

40% of the weight is assigned to the DSGE model at the mode estimate. Figure 1

displays marginal posterior probability distributions of the weights for the DSGE and

BVAR models. The marginal posterior distribution of the DSGE model’s weight is

skewed to the right or, symmetrically, the marginal posterior distribution of the BVAR

model’s weight is skewed to the left. As a result, the 90% probability intervals for

these weights differ only by less than 5%. It is evident that the DSGE model plays an

important role in the second regime.

The posterior estimates of q1,1 and q2,2, reported in Table 2, indicate that the proba-

bility of staying in the same regime is high. Although both regimes are persistent, the

first regime is more persistent than the second regime so that the ergodic probability
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Table 2. Posterior estimates of regime-dependent weights and transi-

tion parameters

Weights

w1,st (DSGE) w2,st (BVAR)

st = 1 0.016 (0.010, 0.077) 0.984 (0.923, , 0.990)

st = 2 0.426 (0.300, 0.651) 0.574 (0.349, 0.700)

Transition parameters

q1,1 q2,2

0.985 (0.948, 0.996) 0.950 (0.835, 0.990)

Note: the parentheses indicate the bounds of the 90% posterior probability interval.
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Figure 1. The posterior probability densities of model weights in the

second regime. The plot of the densities is based on the posterior MCMC

draws.

for the first regime is 0.77, implying that on average the second regime occurs only

23% of the time.7

7For only two regimes, as in our case, the values of q1,1 and q2,2 are all we need to know to compute

the ergodic probability. In general, however, the ergodic probability depends on the entire transition

matrix Q.
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Figure 2. The posterior (smoothed) probabilities of the second regime

in which both the DSGE model and the BVAR model play an important

role. The shaded bars mark the NBER recession dates.

When we restrict model weights to be constant throughout the whole sample and

estimate this constant-weight mixture model, the estimate of the DSGE model’s weight

is only 0.091. The magnitude of this estimate, however, is consistent with the estimates

in our Markov-switching case. Since the ergodic probability of the second regime is

estimated to be 0.23 and the DSGE model’s weight is estimated to be 0.43, the average

weight of the DSGE model is 0.23 × 0.43 = 0.10. In this respect the constant-weight

mixture model and the Markov-switching mixture model reveal the similar information

about the average role of the DSGE model throughout the history.

Del Negro and Schorfheide (2004) connect a DSGE model to a BVAR model using

a parameter indicating the importance of each model, which they call λ. In their

approach, λ is not a weight on the predictive density but has some similar implications.
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When λ is small, the data favors their DSGE model more than their BVAR model.

When λ approaches infinity, the data prefers the BVAR model. They find that λ is

relatively small. One main objective of their paper is to find a good prior for their

BVAR model. As discussed in Del Negro and Schorfheide (Forthcoming), the DSGE

prior derived in their approach has properties similar to the Sims and Zha (1998)

prior. Since our BVAR model has incorporated the Sims and Zha (1998) prior, it is

not surprising that the DSGE model’s weight in our framework is small on average

throughout the sample.

In contrast to the constant-weight case, what is new in the Markov-switching case is

information about particular times of the history when the DSGE model is important.

Figure 2 displays the posterior (smoothed) probabilities of the second regime, condi-

tional on the posterior estimates of model parameters. In this regime both the DSGE

model and the BVAR model play an important role. The DSGE model matters for the

late 1970s and the early 1980s, the periods that cover three adjacent recessions. For

these periods the predictive densities of the DSGE model are in general much higher

than those of the BVAR model. The DSGE model, however, does not receive all the

weight because there is a non-trivial probability of switching from this regime to the

first regime. For many periods in the first regime, including the recession in the early

1970s and the latest three recessions, the DSGE model plays little role and the BVAR

model dominates. While both mixture models can be used to assess the average role of

the DSGE model throughout the history, it is the Markov-switching result that enables

us to determine when the DSGE model is usable and when it is not, as shown in Fig-

ure 2. In Sections VI and VII we explore further implications of this regime-switching

feature.

V. Model fit

To assess how well our proposed Markov-switching mixture model fits to the data in

comparison to other models, we compute the MDD for four models: the DSGE model,

the BVAR model, the mixture model with constant weights, and the Markov-switching

mixture model. For robustness of analysis we present other measures, such as the log

predictive score (LPS), and estimate two versions of a pool of the DSGE and BVAR

models, following Geweke and Amisano (2011). One version is based on the predictive
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pool with constant weights:

p
(
yt | Y

o
t−1, w, Pool

)
= w1p

(
yt | Y

o
t−1, DSGE

)
+ w2p

(
yt | Y

o
t−1, BV AR

)
,

where w = (w1, w2) ≥ 0 with w1 + w2 = 1,

p
(
yt | Y

o
t−1, DSGE

)
= p

(
yt | Y

o
t−1, Θ̂DSGE

)
,

p
(
yt | Y

o
t−1, BV AR

)
= p

(
yt | Y

o
t−1, Θ̂BV AR

)
.

The values Θ̂DSGE are the posterior estimates of the DSGE parameters when the DSGE

model is estimated over the full sample. Similarly, the values Θ̂BV AR are the posterior

estimates of the BVAR parameters when the BVAR model is estimated over the full

sample. Since this is a pool of the two models, we take the estimated parameters for

both models as given before we pool the two models. Thus, the pool involves choosing

the optimal value of w (not parameters) such that the log predictive score, defined

below, is maximized:

LPS (Y o
T |w, Pool) ≡

T∑

t=1

log p
(
yot | Y

o
t−1, w, Pool

)
.

The second version of a pool of the DSGE and BVAR models is to allow the model

weights to vary over time according to the Markov-switching process defined in Sec-

tion III. Specifically, the predictive pool with Markov-switching weights is

p
(
yt | Y

o
t−1, Q, w, Pool

)
=

2∑

st=1

[
w1,stp

(
yt | Y

o
t−1, DSGE

)
+ w2,stp

(
yt | Y

o
t−1, BV AR

)]
p
(
st | Y

o
t−1, Q, w

)
,

where w = (w1,1, w1,2, w2,1, w2,2) ≥ 0 with w1,st + w2,st = 1, and st = {1, 2} follows

the two-regime Markov-switching process. The parameters Q and w are chosen to

maximize the log predictive score

LPS (Y o
T |Q,w, Pool) ≡

T∑

t=1

log p
(
yot | Y

o
t−1, Q, w, Pool

)
,

where the estimated parameters for both the DSGE and the BVAR models are taken

as given before Q and w are optimally chosen.

Table 3 reports the computed MDDs and LPSs for all the models we have discussed.

We begin with an analysis of the LPS. The LPS for the BVAR model is overwhelmingly
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Table 3. Log marginal data densities, log predictive scores, and log

concentrated predictive likelihood

Model type log MDD LPS LCPL

DSGE 5735.72 5882.61 4458.65

(5735.18, 5736.43) (4458.42, 4459.96)

BVAR 5894.60 6441.68 4619.47

Constant pool N/A 6441.71 N/A

Markov pool N/A 6441.71 N/A

Constant mixture 5943.14 6537.73 4680.47

(5942.38, 5943.18) (4679.72, 4681.63)

Markov mixture 5952.67 6550.28 4692.78

(5951.47, 5952.74) (4691.47, 4692.94)

Note: “N/A” stands for “not applicable.” For the “log MDD” column, the value

above parentheses is the log MDD estimated with 100 million MCMC draws. The

parentheses indicate the minimum and maximum values of the log MDDs estimated

from 10 chains of one million MCMC draws with 10 starting points independently

drawn from the prior distribution.

higher than that for the DSGE model, by over 500 in log value.8 In contrast, the

simple pool with optimal constant weights improves the LPS of the BVAR model

by only 0.03 in log value. To understand why the improvement is so insignificant,

we observe that the BVAR model fits to the data so much better than the DSGE

model that the log predictive density p (yot | Yt−1, BV AR) is considerably greater than

p (yot | Yt−1, DSGE) for 180 data points out of a total of 198 quarters in the sample.

In the other 18 periods when p (yot | Yt−1, BV AR) is less than p (yot | Yt−1, DSGE), the

differences between the log predictive densities is so small (relative to the differences

between p (yot | Yt−1, BV AR) and p (yot | Yt−1, DSGE) in those 180 periods) that the

optimal weight for the DSGE model is virtually zero (on the order of 1.0E − 10). The

Markov-switching version of an optimal pool yields the same result, with one regime

8The superiority of the BVAR model with the Sims and Zha (1998) prior over the DSGE model is

well documented in the literature. See Del Negro and Schorfheide (Forthcoming).
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being an absorbing state and the weight for the BVAR model in this regime being

virtually one.

The antecedent finding suggests that it would be worthwhile to explore a mixture of

the two models in which the parameters and the weights are jointly estimated. Geweke

and Amisano (2011) show that asymptotically a mixture model must be superior to

a pool and, when all individual models are false, the pool is superior to individual

models. Although this asymptotic result has, in general, no implication of the same

ranking in small samples, does it hold for our application? Table 3 indicates that the

mixture model with constant weights improves the log LPS by 96. The improvement

produced from the Markov-switching mixture increases the log LPS by additional 12.

Thus, about 90% of the improvement in model fit is due to a convex combination of

predictive densities of individual models. Changes in model weights deliver another

10% of the improvement. Moreover, allowing changes in model weights brings in impor-

tant economic substance regarding the role of the DSGE model at particular times in

history, as stressed in Section IV. We continue to discuss other economic implications

of the Markov-switching mixture model in Sections VI and VII.

We now turn to an analysis of the MDD. We use the truncated modified harmonic

mean (MHM) method proposed by Sims, Waggoner, and Zha (2008) to calculate the

MDD. The details of this method are given in Appendix C. When comparing MDDs,

one should bear in mind that the ratio of two MDDs is the Bayes factor. If the

difference in log values of MDD between two models is greater than 5, for example, the

model with the higher value of MDD is favored decisively by the data. For the BVAR

model, there is an analytical solution for calculating the MDD so that the reported

log value of MDD has negligible numerical errors. For the DSGE model and the two

mixture models, however, numerical errors are small but noticeable. Table 3 reports the

minimum and maximum values of the MDDs estimated from 10 chains of one million

MCMC draws with 10 starting points independently drawn from the prior distribution.

Note that we do not report MDDs for the two pool models (indicated by N/A).

One can compute the MDD by explicitly specifying a prior on model weights, which

would not differ much from the LPS value. Since each constituent model in the pool

is estimated beforehand, it is equivalent to say that the prior of model parameters

is degenerated by centering at the estimates. Reporting such an MDD value would
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not be useful. Moreover, since each constituent model in the pool is taken as given

before the optimal weights are chosen, there is in general no internal mechanism to

prevent in-sample over-fit for an individual model. The mixture approach penalizes

model complexity by estimating the parameters in both models jointly.

Nonetheless, the conclusion reached from the MDD results about the ranking of

models is the same as that from the LPS results. The two mixture models expand

the parameter space by jointly estimating the weights and the parameters of both

individual models. The log MDD for the BVAR is higher than the log MDD for the

DSGE model by over 150. But the mixture model with constant weights dominates

the BVAR model by about 50 in log MDD. For the Markov-switching mixture model,

we gain additional 9 value in the log MDD. Again, this result strengthens the previous

finding from the LPS analysis that 85% of the improvement in model fit is attributable

to a convex combination of predictive densities of individual models.

All this analysis, computationally expensive as it is, indicates that a formal mixture

of the two heterogeneous models is important in improving the model’s fit to the data.9

As additional verification, by reducing the influence of the prior distribution, we use the

10-year data at the beginning of the sample to compute the log predictive likelihood,

concentrating on the latter part of the sample from 1972:I to 2010:II. To see how to

compute this log concentrated predictive likelihood (LCPL), we decompose the log

MDD as10

log p (Y o
T | M) = log

[
t∗−1∏

t=1

p
(
yot | Y

o
t−1,M

)
]
+ log

[
T∏

t=t∗

p
(
yot | Y

o
t−1,M

)
]
,

where M stands for a particular model we study and t∗ corresponds to 1972:I in our

case. The first term on the right-hand side is the log MDD using the data up to t∗−1.

We apply our MCMC simulator on this earlier sample. The LCPL, the second term

on the right-hand side, is the difference in log MDDs between the full sample and the

earlier sample. The column with the label “LCPL” on the top in Table 3 reports the

LCPL values for the four models studied in this paper. It is evident that the LCPLs

for both mixture models are significantly higher than those for the DSGE and BVAR

models, reinforcing the previous conclusion reached by both LPS and MDD analyses.

9See Appendix C.4 for a detailed description of computing time.

10We thank a referee for this suggestion.
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VI. Data filter

One application of our Markov-switching mixture model is to filter the data for

estimation of the DSGE model by discounting observations from the periods in which

the BVAR dominates. As shown in Table 2 and Figure 2, the DSGE model plays

almost no role during the periods under the first regime. This regime covers about

76% of the sample, consistent with the estimated ergodic probability of the first regime

presented in Section IV. The data in the first regime is almost completely discounted

for estimation of the DSGE parameters.

The DSGE model plays an important role in the second regime. This regime covers a

much shorter period of the sample, concentrating on the late 1970s and the early 1980s.

The data in the periods under the second regime is partially discounted for estimation

of the DSGE parameters because the weight assigned to the DSGE model is less than

one. We present and discuss the estimation results for the DSGE parameters in the

Markov-switching mixture model in Appendix D.

In this section we focus on the impulse responses of an economic shock in the DSGE

model. Since many structural shocks in the DSGE model cannot be identified by the

BVAR model, it is important to assess the differences between the responses implied by

the Markov-switching mixture model and those from the DSGE model when estimated

in isolation. To this end, we use a capital depreciation shock as an example. The

capital depreciation shock is a shock to the depreciation rate in the capital accumulation

equation in the DSGE model. It is an important shock, as it can be interpreted as a

proxy for a shock to efficiency in using the capital or a financial shock.

Let εd t be an i.i.d. shock to capital depreciation at the time t with E(εd t) = 0 and

V ar(εd t) = 1. A vector of the kth step impulse responses is defined as

IR
(j)
DSGE,T+k = E

[
yT+k | Θ

(j)
DSGE, εdT+1 = 1, YT , DSGE

]

−E
[
yT+k | Θ

(j)
DSGE, YT , DSGE

]
, (3)

where Θ
(j)
DSGE is a jth posterior draw from the Markov-switching mixture model. In our

calculation, the initial condition represented by YT has no effect on impulse responses

because the DSGE model itself is linear. Thus one can choose an arbitrary value of

YT .
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Even if the DSGE parameters are dawn from the posterior distribution of the

Markov-switching mixture model, the impulse responses are computed based only on

the estimated DSGE model in the mixture because a depreciation shock is not iden-

tified in the BVAR model. Since the DSGE model is important only in the second

regime, the impulse responses represented by IR
(j)
DSGE,T+k are effectively those in the

second regime. In Section VII we discuss how to obtain impulse responses in the first

regime when a common structural shock is identified in both individual models.

Figure 3 contrasts the impulse responses generated by (3), the responses from the

DSGE-only model (i.e., when it is estimated in isolation over the full sample), and

those from the prior distribution of the DSGE model. The figure displays the impulse

responses of output, consumption, real wage, and inflation to a one-standard-deviation

shock to capital depreciation. To be compatible with the literature, we follow Sims and

Zha (1999) and report the 68% probability bands. The left-hand column displays the

responses generated from the estimated Markov-switching mixture model, the middle

column displays the responses from the DSGE-only model, and the right column dis-

plays the responses generated from the prior distribution of the DSGE model. It is

clear that the estimated responses from either the mixture model or the DSGE-only

model differ substantially from the responses generated by the prior distribution of the

DSGE model.11 The data are therefore informative.

Comparing the left and middle columns side by side, one can see the notable differ-

ences between the mixture model and the DSGE-only model. We begin our analysis

with the middle column, when the impulse responses are based on the DSGE-only

model. The increase in the depreciation rate reduces the value of capital accumula-

tion, raises the marginal cost of capital, and lowers investment. Since the expected

stock of capital wealth declines, the negative wealth effect leads to a fall in consump-

tion. Consequently, aggregate output falls. The decline in output leads to a decline

in hours. The equilibrium real wage falls as well, because the declines in hours and in

11Note that the probability bands from the estimated DSGE model alone tend to be narrower than

those from the prior distribution of the DSGE model. Comparing the 95% probability intervals in

Table 5 and those in Table 7 in Appendix D, one can see that the posterior standard deviations for

some shocks, such as the monetary policy shock and the technology shock, have much tighter ranges

than do the prior standard deviations. In those cases, the probability bands from the estimated DSGE

model alone are much narrower than those from the prior distribution of the DSGE model.
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consumption lower the marginal rate of substitution between labor and consumption,

so that the household’s desired wage falls. Inflation responses are positive, but it is

difficult to detect visually because the magnitude is too small (on the order of 1.0E-06).

Inflation increases in response to a depreciation shock because the rise in the marginal

cost of capital slightly dominates the fall in the real wage. According to the probability

bands, all the responses are sharply estimates.

The corresponding impulse responses generated from the mixture model are consider-

ably larger, both in magnitude and in the width of probability bands (the left-hand col-

umn of Figure 3). For the estimates of the DSGE parameters from the mixture model,

the fall in the real wage in response to a positive depreciation shock slightly overweighs

the rise in the marginal cost of capital so that inflation responses are predominantly

negative on impact but are statistically insignificant according to the probability bands.

For the most part, the responses of the three real variables (output, consumption, and

the real wage) are statistically significant. In this sense, the data discounted or filtered

through the mixture model do not make estimation of the DSGE parameters lose its

economic meaning.

More interesting is the width of probability bands in the left-hand column of Figure 3.

Our estimation indicates that estimation of the DSGE model utilizes about one-tenth

of the data points in the sample (taking into account the weight for the DSGE model

in the second regime being 0.43). Thus it is unsurprising that the probability bands

are wider. What is new in our finding, however, is that the width of probability

bands for the mixture model, for most impulse responses, is far more than three (a

square root of ten) times the width for the DSGE-only model when it is estimated

with all the data points. Insight about this result is revealed in Figure 2. Since the

second regime concentrates on three adjacent recessions and excludes many periods of

economic expansions, the data in this regime have more similarity than the data in the

first regime when both recessions and expansions are covered. Such similarity results in

considerably more uncertainty surrounding the estimates than what a simple counting

of data points would suggest.

VII. Full structural analysis

Although the analysis of impulse responses to a capital depreciation shock, presented

in Section VI, is based on the DSGE model, the analysis is partially structural in the
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Figure 3. Impulse responses (expressed as percentages) to a capital de-

preciation shock for the Markov-switching mixture model (left column),

for the DSGE model when estimated in isolation (middle column), and

for the DSGE model with the prior distribution only (right column). The

dashed lines represent 68% posterior probability bands and the solid line

represents the posterior median estimate.
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sense that the BVAR model is not used to interpret the results. The BVAR model plays

a role only in the estimation stage. Once the estimation is finished and the posterior

draws of the DSGE parameters from the Markov-switching mixture are stored, the

BVAR model has no use in the analysis of impulse responses. This exercise is useful

only when the BVAR model is not treated as a structural model.

There is a large strand of literature on using a BVAR model to identify certain eco-

nomic shocks, if not all the shocks (Bernanke (1986), Blanchard and Watson (1986),

Sims (1986), Leeper, Sims, and Zha (1996), Christiano, Eichenbaum, and Evans (1999)).

One prominent example is a monetary policy shock. If we apply the Choleski decom-

position to our BVAR model and let the interest rate respond to all other variables

contemporaneously, a shock to the interest rate equation is identified as a monetary

policy shock by Christiano, Eichenbaum, and Evans (1999). Our original BVAR model

has the same ordering of the variables as this structural version, which is now used

to identify a monetary policy shock. Building on our econometric framework, we now

merge this structural BVAR model (SBVAR model henceforth) with the DSGE model

that has the same type of shock: a shock to monetary policy.

Figures 4 and 5 display the impulse responses to a one-standard-deviation monetary

policy shock under four scenarios: the DSGE-only model (when estimated alone over

the full sample), the SBVAR-only model (when estimated in isolation over the full

sample), the first regime for the Markov-switching mixture of these two heterogenous

models, and the second regime. To avoid wordiness, we use the DSGE model to mean

the “DSGE-only” model and the SBVAR model to mean the “SBVAR-only” model,

whenever it is clear in the context.

We begin with our analysis on the DSGE-only and SBVAR-only models. Impulse

responses to a monetary policy shock from these two heterogenous models are consid-

erably different, both qualitatively and quantitatively. The top two rows of graphs in

Figures 4 show that the magnitude of the interest rate response for the DSGE-only

model is slightly higher than that for the SBVAR-only model at the beginning of the

forecast horizon, but the response for the SBVAR-only model is more persistent. The

response of the price level for the DSGE model is small and negative (on the order of

1.0E-06 and thus difficult to detect by eye). The response of the price level for the

SBVAR model is relatively large and positive. Although the positive response of the
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price level is known in the SBVAR literature as a “price puzzle,” the SBVAR model

continues to be used to analyze the effect of a monetary policy shock on real variables

such as investment and output (Sims (1992), Leeper, Sims, and Zha (1996), Christiano,

Eichenbaum, and Evans (1999)).

The top two rows of graphs in Figure 5 show drastically different patterns of the

responses of investment and output for the two individual models. The DSGE model

implies that the responses of both investment and output are negative at the beginning,

but the negative effect disappears after two years (eight quarters). In contrast, the

SBVAR model implies that the effect on investment and output of a monetary policy

shock is persistently negative throughout the forecast horizon.

To resolve these differences between the DSGE and SBVAR models, the traditional

approach in the literature is to estimate the DSGE model subject to the constraint

that the impulse responses to a monetary policy matches those of the SBVAR model

(Christiano, Eichenbaum, and Evans, 2005). The key argument for this approach is

that the SBVAR model dominates the DSGE model in the fit to the data. Indeed,

the evidence is supported by the results presented in Table 3, where all three measures

indicate that the SBVAR model is decisively favored by the data. This approach

suggests that misspecification of the SBVAR model be not serious in practice.

Our approach recognizes that both the DSGE and SBVAR models may be mis-

specified. Table 3 shows that our Markov-switching mixture model improves the fit

considerably when compared to the SBVAR model and that model weights differ sub-

stantially across the two regimes. We now describe how to compute impulse responses

to a monetary policy shock from the Markov-switching mixture model, and then ex-

plore how impulse responses change from one regime to the other and how they differ

from those generated from the two individual models.

Let Θ(j), Q(j), and w(j) denote the jth posterior draw of all the model parameters. A

vector of impulse responses at horizon k to a one-standard-deviation monetary policy

shock εp T+1 = 1 in regime ℓ ∈ {1, 2} is given by

IR
(j)
ℓ,T+k = E

[
yT+k|Θ

(j), w(j), εpT+1 = 1, sT+1 = · · · = sT+k = ℓ, YT

]
−

E
[
yT+k|Θ

(j), w(j), sT+1 = · · · = sT+k = ℓ, YT

]
. (4)
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Figure 4. Impulse responses (expressed as percentages) to a monetary

policy shock from the DSGE-only model (first row), the SBVAR-only

model (second row), and Markov-switching mixture model (third and

fourth rows). The dashed lines represent 68% posterior probability bands

and the solid line represents the posterior median estimate.
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Figure 5. Impulse responses (expressed as percentages) to a monetary

policy shock from the DSGE-only model (first row), the SBVAR-only

model (second row), and Markov-switching mixture model (third and

fourth rows). The dashed lines represent 68% posterior probability bands

and the solid line represents the posterior median estimate.
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Notice the notational difference between IR
(j)
DSGE,T+k in (3) and IR

(j)
ℓ,T+k in (4). In (3),

since a depreciation shock is identified only in the DSGE model, the impulse responses

are computed through the DSGE model for every posterior MCMC draw of model

parameters. In (4) both the DSGE and SBVAR models identify the same type of

structural shock, which is a monetary policy shock in our case. Thus, the subscript in

IR
(j)
ℓ,T+k has no reference to any particular model, only to the regime.

To compute the impulse responses defined in (4), we let the state space representation

of the ith model be

yt = ai +Hifi,t, (5)

fi,t = bi + Fifi,t−1 + Φiεi,t. (6)

The first system (5) represents measurement equations, the second system (6) repre-

sents state equations, and ft is an unobserved state vector. For a monetary policy

shock, we have εi,pt = εpt for i ∈ {DSGE, SBV AR}. That is, the DSGE model and

the SBVAR model identify the same shock. Combining (4)-(6) leads to

IR
(j)
ℓ,T+k =

∑

i

wj
i,ℓHi

{
E
[
fi,T+k|Θ

(j), εpT+1 = 1, sT+1 = · · · = sT+k = ℓ, YT

]
−

E
[
fi,T+k|Θ

(j), sT+1 = · · · = sT+k = ℓ, YT

] }
, (7)

where i ∈ {DSGE, SBV AR}. Because both the DSGE and BVAR models are linear,

the impulse responses at regime ℓ, represented by IR
(j)
ℓ,T+k, turn out to be independent

of the initial condition YT .

We follow Sims and Zha (2006) and report impulse responses to a monetary policy

shock under different regimes, represented by IR
(j)
ℓ,T+k.

12 The bottom two rows of graphs

in Figures 4 and 5 display the resulting responses. We first analyze the first regime

in which the SBVAR model dominates. As shown in the third row of Figure 4, the

dynamic responses of the price level are smaller both in magnitude and in probability

bands than those generated by the SBVAR-only model; nonetheless, the price puzzle

continues to be significant. As for real variables, the effects on investment and output

of a monetary policy shock, estimated from the Markov-switching mixture model, are

12We compute the impulse responses using alternative methods discussed in Appendix B and with

various values of pT , including the unconditional probabilities of regimes. We find that the values

tend to lie between IR
(j)
1,T+k (first regime) and IR

(j)
2,T+k (second regime).
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smaller with wider probability bands than those generated from the SBVAR-only model

(comparing the second and third rows of Figure 5).

The influence of model uncertainty is evident in this case. The SBVAR model,

when estimated alone, indicates that investment and output continue to stay negative

after two years (the second row of Figure 5). The Markov-switching mixture model

(the third row of Figure 5), however, reveals that there is a nontrivial probability that

investment and output become positive after two years. This time horizon is consistent

with the time after which the responses of investment and output from the DSGE-only

model become positive (the first row of Figure 5). Even though the DSGE model plays

little role in the first regime, its importance in the second regime influences the joint

estimation of the parameters in both individual models. The influence is large enough

to alter the estimates and distributions of impulse responses of both nominal and real

variables.

We now analyze the second regime, in which both the DSGE model and the SBVAR

model play an important role, and compare the results to those in the first regime.

The fourth rows of graphs in Figures 4 and 5 display impulse responses under the

second regime in the Markov-switching mixture model. In response to a monetary

policy shock, the interest rate rises twice as much as does the interest rate in the first

regime. The price puzzle is much weakened. In comparison to the result in the first

regime, the magnitude of the responses is smaller and there is a nontrivial probability

of no price puzzle (the fourth row of Figure 4). As for real variables, the uncertainty

about the responses of investment and output is larger than that in the first regime.

According to the probability bands, the negative responses of investment and output

in the second regime are short lived and, in general, have very wide probability bands,

even at the beginning of the forecast horizon.

To summarize, we show how to compute the impulse responses to the same type

of shock when both individual models in the mixture are structural. More important

is what we have learned from this exercise. Since the responses based on on each

individual model are sharply estimated, economic implications about the effects of a

monetary policy shock differ from one model to the other, as shown in the top two

rows of graphs in Figures 4 and 5. Comparing the impulse responses in the third and

fourth rows to those in the first and second rows of Figures 4 and 5, one can see clearly



CONFRONTING MODEL MISSPECIFICATION IN MACROECONOMICS 27

that the mixture of the two individual models, the DSGE model and the SBVAR

model, has fundamentally different implications about the magnitude and uncertainty

of the effects of a monetary policy on both nominal and real variables. The finding

of smaller magnitude and larger uncertainty about the impulse responses from the

Markov-switching mixture model, in comparison to those from the SBVAR-only model,

is consistent with the view that a large effect of monetary policy is predominantly due

to its systematic component, not due to its unpredictable (random) shocks (Bernanke,

Gertler, and Watson (1997), Sims and Zha (2006)).

VIII. Conclusion

We show in this paper how to apply the Markov-switching mixture methodology to

macroeconomic models. We study two types of widely used macroeconomic models:

a DSGE model and a BVAR model. Although it is computationally demanding, we

show that estimating a Markov-switching mixture of these two heterogenous models is

feasible. The estimated mixture model with two regimes improves the fit to the data

considerably, implying that both models may be misspecified. Taking into account

model uncertainty can alter the estimated results of the parameters in each individual

model. Using a capital depreciation shock as an example, we illustrate how impulse

responses in the DSGE model are changed when the mixture model is used as a data

filter. When the DSGEmodel and the BVAR model identify a common economic shock,

which is a monetary policy shock in our application, we show how to use the Markov-

switching mixture model to combine the two individual models and how to compute

the impulse responses from the mixture model. The resulting impulse responses differ

across the two regimes and have different economic implications about the magnitude

and uncertainty when compared to the impulse responses generated by each individual

model.

The Markov-switching mixture model studied in this paper should be viewed as

a step towards a deep and sophisticated macroeconomic model that we have neither

technology nor intellectual capacity to cope with at the present time. To this end, one

natural extension is to allow agents in our economic model to take into account both

model uncertainty and parameter uncertainty. Works by Hansen and Sargent (2001),

Brock, Durlauf, and West (2003), and Hansen and Sargent (2010) provide guidance on

how to pursue this line of research in the future. Meanwhile, it is our hope that the
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empirical exercise conducted in this paper illustrates how a Markov-switching mixture

of heterogenous structural models can be used to integrate model uncertainty and

parameter uncertainty in macroeconomics.

Appendix A. Detailed data description

All data are constructed from the original data in the Haver Analytics Database.

The constructed data, the original data identifiers, and the data sources are described

below.

• Y Data
t = GDPH

LN16N@USECON
.

• CData
t = (CN@USECON + CS@USECON - CSRU@USECON)∗100/JCXFE@USNA

LN16N@USECON
.

• IData
t = (CD@USECON + FNE@USECON)∗100/JCXFE@USNA

LN16N@USECON
.

• wData
t = LXNFC@USECON/100

JCXFE@USNA
.

• πData
t = JCXFE@USNAt

JCXFE@USNAt−1
.

• LData
t = LXNFH@USECON

LN16N@USECON
.

• FFRData
t = FFED@USECON

400
.

• QData
t = JCXFE@USNA

GordonPriceCDplusES
.

LN16N@USECON: Civilian noninstitutional population: 16 years and over.

Breaks in population are eliminated from 10-year censuses and post 2000 Amer-

ican Community Surveys using “error of closure” method. This fairly simple

method was used by the Census Bureau to get a smooth population monthly

population series. This smooth series reduces the unusual influence of drastic

demographic changes. Source: BLS.

GDPH: Real gross domestic product (2005 dollars). Source: BEA.

CN@USECON: Nominal personal consumption expenditures: nondurable goods.

Source: BEA.

CS@USECON: Nominal consumption expenditures: services. Source: BEA.

CSRU@USECON: Nominal personal consumption expenditures: housing and

utilities. Source: BEA.

CD@USECON: Nominal personal consumption expenditures: durable goods.

Source: BEA.

FNE@USECON: Nominal private nonresidential investment: equipment and

software. Source: BEA.
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JCXFE@USNA: PCE excluding Food and Energy: Chain Price Index (2005=100).

Source: BEA.

LXNFC@USECON: Nonfarm business sector: compensation per hour (1992=100).

Source: BLS.

LXNFH@USECON: Nonfarm business sector: hours of all persons (1992=100).

Source: BLS.

FFED@USECON: Annualized federal funds effective rate. Source: FRB.

GordonPriceCDplusES: Investment deflator. The Tornquist procedure is used

to construct this deflator as a weighted aggregate index from the four quality-

adjusted price indexes: private nonresidential structures investment, private

residential investment, private nonresidential equipment and software invest-

ment, and personal consumption expenditures on durable goods. Each price

index is a weighted one from a number of individual price series within these

categories. For each individual price series from 1947 to 1983, we use Gordon

(1990)’s quality-adjusted price index. Following Cummins and Violante (2002),

we estimate an econometric model of Gordon’s price series as a function of a

time trend and a number of NIPA indicators (including the current and lagged

values of the corresponding NIPA price series). The estimated coefficients are

then used to extrapolate the quality-adjusted price index for each individual

price series for the sample from 1984 to 2007. These constructed price series

are annual. Denton (1971)’s method is used to interpolate these annual series

on a quarterly frequency. The Tornquist procedure is then used to construct

each quality-adjusted price index from the appropriate interpolated quarterly

price series.

Appendix B. Impulse responses and decomposition of variance

In Section VII we discuss how to compute impulse responses conditional on a partic-

ular regime when both models are structural. Because regime-switching model weights

introduce nonlinearity into the mixture model, there are many other ways to compute

impulse responses. One approach is to let impulse responses depend on the probability

of sT+k instead of a particular regime. Let p
(j)
T+k be the vector whose ℓth component,

p
(j)
ℓ,T+k, is the probability that sT+k = ℓ. We have p

(j)
T+k =

(
Q(j)

)k
p
(j)
T . Let w

(j)
i,T+k de-

note the weight associated with model i ∈ {DSGE,BV AR} at the time T + k. Thus,
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w
(j)
i,T+k =

∑2
ℓ=1 w

(j)
i,ℓ p

(j)
ℓ,T+k. Clearly, w

(j)
i,T+k does not depend on a particular realization

of sT+k but rather on the probability of sT+k. Impulse responses are computed as

IR
(j)
T+k =

∑

i

w
(j)
i,T+kHi

{
E
[
fi,T+k|Θ

(j), εpT+1 = 1, YT

]
− E

[
fi,T+k|Θ

(j), YT

] }
,

where i ∈ {DSGE, SBV AR}. Note that the impulse responses IR
(j)
T+k do not depend

on any particular model in the mixture and that they depend on YT if and only if the

initial probability p
(j)
T is a function of YT . Note that the term in the braces is simply

the impulse response of the ith state vector to a structural shock and can easily be

computed using the ith state equation.

Impulse responses are nonlinear functions of model parameters Θ. For any function

of Θ that has a finite posterior variance, denoted by f(Θ), we propose the following

method to decompose the overall variance of f(Θ) into the sum of two components, one

attributable to parameter uncertainty within the model and the other to uncertainty

across models:13

V ar (f(Θ) | YT )︸ ︷︷ ︸
Overall uncertainty

=

∫
V ar (f(Θ) | w, YT ) p(w | YT ) dw

︸ ︷︷ ︸
Parameter uncertainty

+

∫
[E (f(Θ) | w, YT )−E (f(Θ) | YT )]

2 p(w | YT )dw
︸ ︷︷ ︸

Model uncertainty

.

As shown in Table 3, the MDD for the BVAR model is at least 150 over the MDD for

the DSGE model. Thus, the BVAR model overwhelmingly dominates the DSGE model

and there is no model uncertainty according to Bayesian model averaging. In contrast,

our proposed approach to decomposition overcomes this difficulty by measuring model

uncertainty through variations in model weights. Indeed, as shown in Table 2, there

exists a considerable variation in model weights. Implementing our decomposition

method, however, incurs an additional cost of sampling Θ for each posterior draw of

w.

13This decomposition is for the purpose of structural analysis. For the purpose of pure prediction

or forecasting, Geweke and Amisano (Forthcoming) show how to decompose the variance of predictive

distributions into extrinsic variance, arising from posterior uncertainty about parameters, and intrinsic

variance, arising from predictive errors given the parameters.
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Appendix C. The MCMC posterior sampler

In this section we describe, in detail, our algorithm of finding the posterior mode,

our posterior simulator for MCMC draws, and our method of computing the MDD.

Our approach follows Sims, Waggoner, and Zha (2008). In all succeeding subsections

we omit the notation Mi for notational simplicity with the understanding that all the

objects analyzed in this appendix are conditioned on a particular model, being the

DSGE model, the BVAR model, or the mixture model.

C.1. Posterior mode. Estimation of a mixture of our DSGE and BVAR models,

the two substantially heterogeneous models, is a challenging task, as the shape of

the posterior density tends to be very non-Gaussian, full of local modes and winding

ridges. Because of such a non-Gaussian shape of the density function, the posterior

mean receives an extremely low probability and thus is a poor approximation to the

posterior mode. For the same reason, searching the posterior mode is difficult, as

standard optimization routines often converge to different local peaks from different

starting points.

We use the block-wise optimization method recommended by Sims, Waggoner, and

Zha (2008). We first group the model parameters into four blocks: ΘDSGE (all the pa-

rameters for the DSGE model), ΘBV AR (all the parameters for the BVAR model), Q,

and w. This separation proves critical in practice because the conditional posterior den-

sity p (θDSGE | Y o
T , θBV AR, Q, w) differs substantially from p (θBV AR | Y o

T , θDSGE, Q, w).

While the density p (θDSGE | Y o
T , θBV AR, Q, w) is non-Gaussian, the conditional poste-

rior density p (θBV AR | Y o
T , θDSGE, Q, w) is closer to being Gaussian.

Given an initial guess of the values of the parameters, we use a standard hill-climbing

quasi-Newton optimization routine to find the value of each block of parameters that

maximizes the posterior density while holding other blocks of parameters fixed at the

previous values. We iterate this algorithm through blocks until it converges. For

each iteration we employ a constrained optimization routine to check whether there

are boundary or corner solutions associated with Q, w, or other model parameters.

While this block-wise approach at first increases likelihood more efficiently than a

quasi-Newton method applied directly to the complete parameter vector, it can be-

come inefficient after initial iterations. For this reason, when the block-wise iterations

have converged or nearly converged, we apply the quasi-Newton algorithm to the full
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parameter vector, with BFGS (Broyden-Fletcher-Goldfarb-Shanno) updates of the full

Hessian matrix. In our experience, these alternative approaches substantially improve

the likelihood value. We use a computer cluster to search in parallel for the highest

posterior density from as many as ten thousand randomly chosen starting points.

C.2. MCMC simulations. Our MCMC simulations are based on the Gibbs-Metropolis

algorithm. The general convergence property of the Gibbs-Metropolis algorithm is dis-

cussed in Geweke (Geweke, 2005). We use the idea of Gibbs sampling to obtain the

empirical joint posterior density p(θDSGE, θBV AR, Q, w | Y o
T ) by sampling alternately

from the following conditional posterior distributions represented by

p(ΘDSGE | Y o
T ,ΘBV AR, w),

p(ΘBV AR | Y o
T ,ΘDSGE, w),

p(w | Y o
T ,Θ, Q),

p(Q | Y o
T ,Θ, w),

where Θ = (ΘDSGE,ΘBV AR). For each of the first three conditional posterior densities,

we use the straight Metropolis algorithm with a Gaussian density as a proposal den-

sity.14 To simulate from the last distribution, we first make a draw of the Markov chain

ST from p(ST | Y o
T ,Θ, Q, w), and then draw Q from p(Q | Y o

T ,Θ, w, ST ). This approach

has the advantage that both of these distributions are sampled directly. To draw ST ,

the distributions p(st | Y o
t ,Θ, Q, w) and p(st | Y o

t−1,Θ, Q, w) are obtained using the

forward recursion algorithm documented in Hamilton (1989), Chib (1996), and Kim

and Nelson (1999). Then sT is drawn from p(sT | Y o
T ,Θ, Q, w) and sT−1, sT−2, . . . , s0

are drawn recursively using

p (st | Y
o
T ,Θ, Q, w, sT , · · · , st+1) = p (st | Y

o
t ,Θ, Q, w, st+1) =

qst+1,stp (st | Y
o
t ,Θ, Q, w)

p (st+1 | Y
o
t ,Θ, Q, w)

.

The distribution p(Q | Y o
T ,Θ, w, ST ) is of Dirichlet if the prior is of Dirichlet, which is

true in our case. It is straightforward to sample directly from the Dirichlet using the

univariate gamma distribution Devroye (1986, pp. 593-594).

14We have also experimented with a Beta or Dirichlet density. There is no notable improvement

in efficiency mainly because the shape of p(w | Y o
T ,Θ, Q) is campanulate, as shown in Figure 1.
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C.3. Computing the MDD. Denote θ∗ = (Θ, Q, w). The marginal data density is

defined as

p(Y o
T ) =

∫
p(Y o

T | θ∗)p(θ∗) dθ∗. (A1)

We use the popular modified harmonic means method discussed in Gelfand and

Dey (1994) to approximate (A1) numerically. The method is based on the following

equation:

p(Y o
T )

−1 =

∫

Θ∗

h(θ∗)

p(Y o
T | θ∗)p(θ∗)

p(θ∗ | Y o
T )dθ

∗, (A2)

where Θ∗ is the support of the posterior probability density and the weighting density

(not just kernel) function h(θ∗) must have support that is contained in Θ∗.

A numerical evaluation of the integral on the right-hand side of (A2) is accomplished

through the Monte Carlo (MC) integration

p̂(Y o
T )

−1 =
1

N

N∑

i=1

m(θ∗, (j)), (A3)

where θ∗, (j) is a jth draw of θ∗ from the posterior distribution p(θ∗ | YT ) and

m(θ∗) =
h(θ∗)

p(Y o
T | θ∗)p(θ∗)

.

If m(θ∗) is bounded above, the rate of convergence from this MC approximation

is likely to be practical. Geweke (1999) proposes an implementation with h(·) being

a truncated multivariate Gaussian density constructed from the posterior simulator.

The tail of this Gaussian distribution is truncated to ensure that the support of h(·)

is contained in the support of the posterior density function. When the posterior

distribution is very non-Gaussian, as in our case, Sims, Waggoner, and Zha (2008)

point out three sources of difficulty with this implementation. One prominent source

of difficulty is that the likelihood can get to almost zero in the interior points of the

parameter space Θ∗. In this situation, truncating the tail of the weight distribution

does not guarantee that m(θ∗) is bounded above.

To overcome this numerical hurdle, we follow Sims, Waggoner, and Zha (2008) and

choose the weighting density such thatm(θ∗) is bounded above by construction. Specif-

ically, let U be a positive number and Θ∗

U be the region defined by

Θ∗

U = {θ : p(Y o
T | θ∗)p(θ∗) > U} .
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If g(θ∗) is any known and tractable density that is bounded above, and h(θ∗) is the

density obtained by restricting g(θ∗) to Θ∗

U , then the function m(θ∗) is bounded above

as well. To compute h(θ∗) from g(θ∗), we must know the probability that a draw from

g(θ∗) lies in Θ∗

U . The probability is calculated using draws from the distribution given

by g(θ∗).

We choose g(θ∗) from the family of elliptical distributions.15 For instance, Gaussian

distributions are elliptical. For our problem, an elliptical density function gives us

flexibility to approximate the posterior density function better than a Gaussian density

function. Elliptical distributions are characterized by a symmetric and positive definite

matrix S, which defines the elliptical contours, a vector c, which defines the center, and

non-negative one dimensional function, which defines the density across the contours.

We use the estimated posterior mode to define the center, the estimated second moment

of the posterior distribution to define the contours, and a step function to define the

density across the contours. The step function is chosen so that the probability of lying

inside an ellipse is approximately the same for the posterior and proposal distributions.

C.4. Convergence. To compute the MDD accurately, we take two steps. First, we

must be able to compute the probability that a proposal draw lies in the region Θ∗

U ,

which can be interpreted as the probability of success in a Bernoulli trial. Because

we make as many independent draws from the proposal as desired, this probability is

accurately computed in our application.

With this probability in hand, we can use posterior draws to compute the MDD using

equation (A3). To check the accuracy of this computation, we use two techniques.

First, we use an extremely long sequence, one hundred million, of MCMC draws.16

We divided this sequence into a hundred subsequences of one million draws and then

computed the MDD from the entire sequence and from each of the subsequences. The

variation among the subsequences is very small.

While the above technique employs many MCMC chains, the posterior mode is a

starting point for each. As an alternative, we use draws from the prior as starting points

for multiple MCMC chains, each of which has a length of one million draws. Selecting

15See Sims, Waggoner, and Zha (2008) for details.
16On a standard desktop computer with one core, the computation would have taken more than a

month. We have used a cluster of computers to help speed up our computation.
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an appropriate starting point is crucial for reliable MCMC draws. If the initial value

is in an extremely low probability region, then an unreasonably long burn-in period

would be required to obtain convergence of the MCMC chain. Most parameter values

drawn from the prior have extremely low likelihood values, a majority below −10 in

log value. Recall that the likelihood at the posterior density mode is over 6000 in log

value. Thus, we draw from the prior until it reaches a reasonable likelihood value (e.g.,

above 3000 in log value). We use 10 such randomly selected starting points and record

the minimum and maximum values of the MDDs calculated from these chains. The

MDD value reported in Table 3 uses the long MCMC chain starting from the posterior

mode, and the associated interval marks the minimum and maximum values of the

MDDs computed from the 10 shorter chains using draws from the prior distribution as

starting points.

Appendix D. The DSGE model

In this appendix we describe the complete log-linearized system for the DSGE model

studied by Liu, Waggoner, and Zha (2011), along with the prior specification and the

posterior estimates. The model is similar to Altig, Christiano, Eichenbaum, and Linde

(2004) and Smets and Wouters (2007), with the notable exceptions that (1) some real

rigidity is introduced, as in Chari, Kehoe, and McGrattan (2000), by assuming the

existence of firm-specific factors (such as land) such that the sum of cost shares of

capital and labor inputs is less or equal to one; and (2) a shock to the depreciation

in physical capital is introduced as a stand-in for a shock to capital destruction or a

financial shock.

D.1. Linearized system. We introduce the notation ∆xt = xt−xt−1. We use the hat

variable, x̂t, to denote the log deviation of the stationary variable Xt from its steady

state value (i.e., x̂t = log(Xt/X)). The log-linearized equilibrium conditions for our

DSGE mode, below, summarize the equilibrium dynamics.

π̂t − γpπ̂t−1 =
κp

1 + ᾱθp
(µ̂pt + m̂ct) + βEt[π̂t+1 − γpπ̂t], (price-Phillips curve) (A4)

ŵt − ŵt−1 + π̂t − γwπ̂t−1 =
κw

1 + ηθw
(µ̂wt + m̂rst − ŵt) +

βEt[ŵt+1 − ŵt + π̂t+1 − γwπ̂t], (wage-Phillips curve) (A5)

q̂kt = S′′λ2
I

{
∆ît +

1

1− α1
(∆q̂t + α2∆ẑt)
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−βEt

[
∆ît+1 +

1

1− α1
(∆q̂t+1 + α2∆ẑt+1)

]}
, (investment decision) (A6)

q̂kt = Et

{
∆ât+1 +∆Ûc,t+1 −

1

1− α1
[α2∆ẑt+1 +∆q̂t+1]

+
β

λI

[
(1− δ)q̂k,t+1 − δδ̂t+1 + r̃k r̂k,t+1

]}
, (capital decision) (A7)

r̂kt = σuût, (capacity utilization) (A8)

0 = Et

[
∆ât+1 +∆Ûc,t+1

−
1

1− α1
[α2∆ẑt+1 + α1∆q̂t+1] + R̂t − π̂t+1

]
, (bond decision) (A9)

k̂t =
1− δ

λI

[
k̂t−1 −

1

1− α1
(α2∆ẑt +∆q̂t)

]

−
δ

λI

δ̂t +

(
1−

1− δ

λI

)
ît, (capital law of motion) (A10)

ŷt = cy ĉt + iy ît + uyût + gyĝt, (resource constraint) (A11)

ŷt = α1

[
k̂t−1 + ût −

1

1− α1
(α2∆ẑt +∆q̂t)

]
+ α2 l̂t, (production function) (A12)

ŵt = r̂kt + k̂t−1 + ût −
1

1− α1
(α2∆ẑt +∆q̂t)− l̂t, (labor & capital demand)(A13)

R̂t = ρrR̂t−1 + (1 − ρr) [φπ π̂t + φy ŷt] + σrεrt, (interest rate rule) (A14)

where

m̂ct =
1

α1 + α2
[α1r̂kt + α2ŵt] + ᾱŷt, (A15)

m̂rst = ηl̂t − Ûct, (A16)

Ûct =
βb(1− ρa)

λ∗ − βb
ât −

λ∗

(λ∗ − b)(λ∗ − βb)
[λ∗ĉt − b(ĉt−1 −∆λ̂∗

t )]

+
βb

(λ∗ − b)(λ∗ − βb)
[λ∗Et(ĉt+1 +∆λ̂∗

t+1)− bĉt], (A17)

Note that π̂t is inflation, ŵt is real wage, q̂kt is the shadow price of existing capital

(Tobin’s q), ît is investment, q̂t is the biased technology shock process, ẑt is the neutral

technology shock process, ât is the risk premium (preference) shock process, ût is

the utilization rate of capital, r̂kt is the real rental price of capital, δ̂t is the capital

depreciation shock process, R̂t is the nominal rate of interest, k̂t is the capital stock,

ŷt is output, ĉt is consumption, ĝt is government spending, and l̂t is hours worked.

The steady-state variables are given by

r̃k =
λI

β
− (1 − δ), (A18)

uy ≡
r̃kK̃

Ỹ λI

=
α1

µp

, (A19)
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iy = [λI − (1− δ)]
α1

µpr̃k
, (A20)

cy = 1− iy − gy. (A21)

The new parameters introduced in the above equilibrium conditions are

λI = (λqλ
α2

z )
1

1−α1 ,

λ∗ = (λα2

z λα1

q )
1

1−α1 ,

∆λ̂∗

t =
1

1− α1
(α1∆q̂t + α2∆ẑt),

θp =
µp

µp − 1
,

κp =
(1− βξp)(1 − ξp)

ξp
,

ᾱ =
1− α1 − α2

α1 + α2
,

θw ≡
µw

µw − 1
,

κw =
(1 − βξw)(1 − ξw)

ξw
.

Note that gy is the average ratio of government spending to output, cy is the average

ratio of consumption to output, iy is the average ratio of investment to output, µpt is

the average price markup, µwt is the average wage markup, λq is the growth rate of

investment-specific technology, λz is the growth rate of neutral technology, α1 is the

cost share of capital input, α2 is the cost share of labor input, δ is the average capital

depreciation rate, b is internal habit, S ′′ represents the investment adjustment costs,

σu represents the curvature of the cost function of variable capital utilization, ξp is

the probability that a firm cannot adjust its price, γp measures the degree of price

indexation, ξw is a fraction of households who cannot reoptimize their wage decisions,

and γw measures the degree of wage indexation.

In addition to all the equilibrium conditions, we have 7 shock processes:

logµwt = (1− ρw) logµw + ρw log µw,t−1 + σwεwt − φwσwεw,t−1, (price markup)

logµpt = (1− ρp) logµp + ρp logµp,t−1 + σpεpt − φpσpεp,t−1, (wage markup)

log zt = (1− ρz) log z + ρz log zt−1 + σzεzt, (neutral technology)

log qt = (1− ρq) log q + ρq log qt−1 + σqεqt, (embodied technology)

logAt = (1− ρa) logA+ ρa logAt−1 + σaεat, (risk premium)

log δt = (1− ρd) log δ + ρd log δt−1 + σdεdt, (capital depreciation)

log G̃t = (1 − ρg) log G̃+ ρg log G̃t−1 + σgεgt + ρgzσzεzt, (spending)
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where ε represents an i.i.d. normal shock and σ represents the corresponding standard

deviation.

To compute the equilibrium, we eliminate both ût and r̂kt by using (A8) and (A11),

leaving 9 equations and 9 variables π̂t, ŵt, ît, q̂kt, ĉt, k̂t, ŷt, l̂t, and R̂t. Out of these

9 variables, we have 7 corresponding observable variables (except q̂kt and k̂t) for our

estimation. Finally, we have one additional observable variable used in our estimation:

the biased technology shock q̂t.

In addition to the 9 equilibrium conditions, we have 7 equations describing the AR

processes for the 7 structural shocks, 4 equations describing the 2 MA processes, and

7 equations concerning the 7 expectational terms in the system. Thus, there are 27

DSGE equations in total.

A standard solution technique, such as the method proposed by Sims (2002), can

be directly applied to these 27 equations. The solution leads to the following VAR(1)

form of state equations:

ft = Fft−1 + Φεt, (A22)

where εt = [εrt, εpt, εwt, εgt, εzt, εat, εdt, εqt]
′, ft is a 27 × 1 vector of variables in the

log-linearized system, and F and Φ are matrix functions of model parameters.

Let yt be a 8× 1 vector of observable represented as

yt =
[
∆ lnY Data

t ,∆ lnCData
t ,∆ ln IData

t ,∆ lnwData
t , ln πData

t ,∆ lnQData
t , lnLData

t ,FFRData
t

]
′

.

The observable vector is connected to the model (state) variables through the mea-

surement equations

yt = a+Hft,

where

a =
[
log λ∗, log λ∗, log λ∗, log λ∗, log π, log λq, logL, logR

]
′

. (A23)

The estimation applies to this state space form.

D.2. The prior. The prior for the DSGE model is reported in Tables 4 and 5. Instead

of specifying the mean and the standard deviation, we use the 90% probability interval

to back out the hyperparameter values of the prior distribution. The intervals are

chosen to be wide enough to allow for the possibility that the posterior mode is close

to or on the boundary of the parameter space. The wide intervals also allow for the

possibility of multiple local posterior peaks (Del Negro and Schorfheide, 2008). This
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approach to choosing the prior is useful to deal with skewed distributions. It allows for

reasonable hyperparameter values in certain distributions, such as the Inverse-Gamma,

where the first two moments may not exist.

For many parameters with the Beta prior distribution, such as the habit parameter

and the persistence parameters in shock processes, we insist on a positive probability

density at the value zero to allow for the possibility of no habit and no persistence at

all. On the other hand, we insist on zero probability density at the value 1 to maintain

the assumption that the economy is on the balanced growth path. Consequently, the

two hyperparameter values for the Beta prior are set at 1.0 and 2.0.

The prior for the labor share and capital share is the Beta distribution with the

restriction α1 + α2 ≤ 1 such that the production technology requires firm-specific

factors (Chari, Kehoe, and McGrattan, 2000). If we treated α1 and α2 independently,

the 90% probability bounds for the α1 values would be 0.3 and 0.4 and those for

α2 would be 0.5 and 0.7. With the restriction α1 + α2 ≤ 1 imposed in this paper,

however, the joint 90% probability region implies that the 90% probability bounds will

be different.

The prior for the inverse Frisch elasticity η follows the Gamma distribution. We

choose the two hyperparameters of the Gamma distribution such that the lower bound

(0.2) and the upper bound (10.0) of η constitute the 90% probability interval. This

prior range for η implies that the Frisch elasticity lies between 0.1 and 5.

The lower and upper bounds of prior distributions for the parameters λq, λ
∗, β, σu,

S ′′, δ, ξp, γp, ξw, γw, φπ, φy, and π∗ are specified in Table 4. Using these wide bounds,

we back out the two hyperparameter values for the corresponding prior distributions.

The Gamma prior for the average net price markup µp−1 is the same as the Gamma

prior for the average net wage markup µw − 1. By setting the first hyperparameter of

this prior to be 1.0, we allow for a positive probability that the net markups may be

zero. This generality (a less stringent prior) turns out to be critical, as our posterior

estimates of µp − 1 and µw − 1 are nearly zero. We set the second hyperparameter of

the Gamma prior at 5.5 such that the implied 90% probability bounds are wide enough

(from 0.0094 to 0.5446).
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The prior for the parameter ρgz, capturing the impact of technological improvement

on government spending, is the Gamma distribution with the 90% probability bounds

given by [0.2, 3.0].

The standard deviation of each of the 8 shocks has the Inverse Gamma prior distri-

bution with the 90% probability bounds given by [0.0005, 1.0]. These wide bounds are

necessary to take account of the possibility that some shocks may have very small vari-

ances while others may have very large variances. The two hyperparameters implied

by these bounds, as reported in Table 5, indicate that there exist no moments for this

Inverse Gamma prior.

D.3. Posterior estimates. The prior specified for the DSGE model is looser and more

agnostic in this paper than most priors used in the DSGE literature. The agnostic prior

comes also with a price: since the likelihood function for the Markov-switching mixture

model is complicated and full of multiple local peaks, the resulting posterior density

function is complicated as well. The non-Gaussian nature of the posterior density

implies that the posterior mean may have a very low probability and thus cannot

represent the most likely outcome for the model. The posterior mode is, by definition,

the most probable point in the parameter space, regardless of how non-Gaussian and

complicated the shape of the posterior probability density is. Moreover, using a point in

the neighborhood of the posterior mode as a starting point for the MCMC algorithm

avoids the situation where a long sequence of posterior draws gets stuck in the low

probability region due to a poor starting point.

Tables 6 and 7 report the posterior-mode estimates of the DSGE model parameters

along with the 90% marginal probability intervals. In these tables we contrast the es-

timated results for the Markov-switching mixture model to those for the DSGE model

when estimated alone (we call it “DSGE-only”). Despite the fact that the mixture

model discounts a great many observations used for estimation of the DSGE parame-

ters, a number of the estimated DSGE parameters from the mixture model are similar

to those from the DSGE-only model. For instance, the estimate of the average price

markup is close to zero, similar to the estimate in the DSGE-only model. This result

implies that the demand curve for differentiated goods is very flat. Thus, a small in-

crease in the relative price can lead to large declines in relative output demand. Even

if firms can re-optimize their pricing decisions frequently, they choose not to adjust



CONFRONTING MODEL MISSPECIFICATION IN MACROECONOMICS 41

their relative prices too much. In other words, the small average markup and thus the

large demand elasticity become a source of strategic complementarity in firms’ pricing

decisions.

The strength of strategic complementarity is measured by the price Phillips-curve

slope parameter:

ps =
κp

1 + ᾱθp
.

The smaller the value of ps is, the stronger strategic complementarity is. According to

the posterior estimates for the DSGE model alone (Table 6), we have µp = 1.00019,

α1 = 0.177, α2 = 0.804, β = 0.9977, and ξp = 0.372. Thus, the Phillips-cure slope

parameter is pc = 0.0103. If there were no real rigidity (i.e., α1 +α2 were equal to one

exactly), we would have pc = κp = 1.0616. This weak strategic complementarity would

imply a fairly large response of inflation or the price level to a structural shock. But

our estimated Phillips-curve slope parameter is much smaller. To attain such a small

value (pc = 0.0103) without any real rigidity, the price sticky parameter would have

to be ξp = 0.90, implying the average duration of two and a half years before prices

change.

The general pattern, as indicated by the 90% probability intervals, is that the

Markov-switching mixture model exposes more uncertainty about the estimated DSGE

parameters than what is implied when the DSGE model is treated as the truth and

estimated alone. In many cases, such as the inverse Frisch elasticity of labor supply

(η), the curvature of the capital utilization cost function evaluated at the steady state

(σu), and the curvature of the adjustment cost function at the steady state (S ′′), the

probability distributions have changed to be heavily skewed to higher values. For in-

stance, the posterior distribution of η is so skewed that the mode is outside the 90%

probability interval.17

In addition to changes of probability intervals, many of the estimated DSGE param-

eters from the mixture model are different from the DSGE-only model. For instance,

17Remember that the number of parameters combined from the two models in the mixture is very

large and the shape of the posterior probability density over this high-dimensional parameter space is

extremely non-Gaussian full of skewness and fat-tails. When we compute the marginal 90% probability

interval of one parameter by integrating out all the rest of the parameters, it is not uncommon that

some posterior mode estimates fall outside the 90% probability intervals as indicated in Tables 6 and

7.
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the estimate of β is much smaller for the mixture model than for the DSGE-only model.

Both the biased technology growth rate (λq) and the output growth rate (λ∗) are esti-

mated to be much smaller from the mixture model than from the DSGE-only model.

These results are intuitive because the DSGE model in the mixture plays an important

role only in the late 1970s and early 1980s (see Figure 2). These are the times when

the U.S. economy experiences three large recessions in a very short period of time and

the growth rates are slower than the rest of the sample.

Perhaps the most notable are changes pertaining to every persistence parameter. As

shown in Table 7, the 90% probability intervals for persistence parameters are much

wider in the mixture model than in the DSGE-only model. Specifically, the posterior

distributions for persistence parameters tend to have a long fat tail toward zero, in-

dicating much more uncertainty about the persistence of a shock than the inference

from the DSGE-only model. The estimates of persistence parameters themselves from

the mixture model are considerably smaller than those estimates from the DSGE-only

model.

Another notable example pertains to the estimated results for the capital deprecia-

tion shock process. The estimate of the shock standard deviation (σd) from the mixture

model is considerably larger than that from the DSGE-only model. Moreover, the 90%

probability interval indicates that the marginal distribution of the shock standard de-

viation is skewed heavily to a very high value. The estimated persistence parameter

(ρd), on the other hand, is smaller than that from the DSGE-only model. The proba-

bility interval implies a large amount of probability of lower values of the persistence

parameter than the value at the posterior mode. In the main text, we compare the

impulse responses to a depreciation shock from the mixture model to those from the

DSGE-only model.
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Table 4. Prior distributions of DSGE structural parameters

Prior

Parameters Description Distributions αprior βprior 5% 95%

General parameters

b Habit Beta 1.0 2.0 0.025 0.776

α1 Capital share Beta 85.5869 159.4377 0.3 0.4

α2 Labor share Beta 38.4721 25.4535 0.5 0.7

η 1/(Frisch elasticity) Gamma 1.0576 0.3106 0.2 10

100(λq − 1) Biased tech growth Gamma 1.8611 3.0112 0.1 1.5

100(λ∗ − 1) Output growth Gamma 1.8611 3.0112 0.1 1.5

100 (β−1 − 1) Discount factor Gamma 1.5832 1.0126 0.2 4.0

Firm parameters

σu Utilization cost Gamma 3.7790 2.4791 0.5 3.0

S ′′ Adjustment cost Gamma 1.0576 0.6213 0.5 5.0

µp − 1 Price markup Gamma 1.0 5.5 0.0094 0.5446

µw − 1 Wage markup Gamma 1.0 5.5 0.0094 0.5446

4δ Depreciation Beta 5.4257 41.4890 0.05 0.2

ξp Calvo pricing Beta 2.0384 3.0426 0.1 0.75

γp Price indexation Beta 1.0 1.0 0.05 0.95

ξw Calvo wage Beta 2.0384 3.0426 0.1 0.75

γw Wage indexation Beta 1.0 1.0 0.05 0.95

Policy parameters

ρr Interest persistence Beta 1.0 2.0 0.025 0.776

φπ Inflation coef Gamma 2.4373 1.0876 0.5 5.0

φy Output coef Gamma 1.0 1.0 0.05 3.0

400 logπ∗ Inflation target Gamma 2.9043 0.7690 1.0 8.0

Note: “5%” and “95%” demarcate the low and high bounds of the 90% probability

interval.
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Table 5. Prior distributions of DSGE shock parameters

Prior

Parameters Description Distributions αprior βprior 5% 95%

Persistence parameters

ρp Price markup AR Beta 1.0 2.0 0.025 0.776

φp Price markup MA Beta 1.0 2.0 0.025 0.776

ρw Wage markup AR Beta 1.0 2.0 0.025 0.776

φw Wage markup MA Beta 1.0 2.0 0.025 0.776

ρgz Spending on tech Gamma 1.8611 1.5056 0.2 3.0

ρa Preference Beta 1.0 2.0 0.025 0.776

ρq Biased tech Beta 1.0 1.0 0.05 0.95

ρz Neutral tech Beta 1.0 1.0 0.05 0.95

ρd Depreciation Beta 1.0 2.0 0.025 0.776

Standard deviations

σr Monetary policy Inverse Gamma 0.4436 0.0009 0.0005 1.0

σp Price markup Inverse Gamma 0.4436 0.0009 0.0005 1.0

σw Wage markup Inverse Gamma 0.4436 0.0009 0.0005 1.0

σg Gov spending Inverse Gamma 0.4436 0.0009 0.0005 1.0

σz Neutral tech Inverse Gamma 0.4436 0.0009 0.0005 1.0

σa Preference Inverse Gamma 0.4436 0.0009 0.0005 1.0

σq Biased tech Inverse Gamma 0.4436 0.0009 0.0005 1.0

σd Depreciation Inverse Gamma 0.4436 0.0009 0.0005 1.0

Note: “5%” and “95%” demarcate the low and high bounds of the 90% probability

interval.
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Table 6. Posterior distributions of DSGE structural parameters

DSGE model alone Markov mixture model

Parameters Description Mode 5% 95% Mode 5% 95%

General parameters

b Habit 0.544 0.493 0.624 0.596 0.544 0.881

α1 Capital share 0.177 0.151 0.203 0.321 0.251 0.342

α2 Labor share 0.804 0.747 0.818 0.675 0.566 0.707

η 1/(Frisch elasticity) 0.005 0.003 0.167 0.009 0.122 7.397

100(λq − 1) Biased tech growth 1.507 1.215 1.911 0.763 0.198 0.948

100(λ∗ − 1) Output growth 0.483 0.400 0.569 0.253 0.052 0.430

100 (β−1 − 1) Discount factor 0.228 0.081 0.909 0.822 0.402 1.441

Firm parameters

σu Utilization cost 2.018 1.404 3.787 0.620 0.226 1.797

S ′′ Adjustment cost 0.800 0.608 1.278 0.746 0.288 4.032

µp − 1 Price markup 0.000 0.000 0.001 0.000 0.000 0.386

µw − 1 Wage markup 0.003 0.015 0.176 0.003 0.010 0.603

4δ Depreciation 0.145 0.064 0.204 0.076 0.008 0.153

ξp Calvo pricing 0.372 0.308 0.760 0.406 0.349 0.926

γp Price indexation 0.121 0.028 0.408 0.775 0.147 0.968

ξw Calvo wage 0.303 0.269 0.606 0.312 0.231 0.808

γw Wage indexation 0.790 0.088 0.954 0.537 0.075 0.961

Policy parameters

ρr Interest persistence 0.618 0.572 0.687 0.457 0.327 0.742

φπ Inflation coef 1.480 1.392 1.693 1.388 1.190 2.472

φy Output coef 0.066 0.052 0.101 0.166 0.056 0.558

400 logπ∗ Inflation target 5.576 3.863 10.109 4.216 1.022 9.399

Note: “5%” and “95%” demarcate the low and high bounds of the 90% probability

interval.
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Table 7. Posterior distributions of DSGE shock parameters

DSGE model alone Markov mixture model

Parameters Description Mode 5% 95% Mode 5% 95%

Persistence parameters

ρp Price markup AR 0.786 0.587 0.878 0.526 0.087 0.903

φp Price markup MA 0.627 0.276 0.820 0.377 0.019 0.756

ρw Wage markup AR 0.992 0.987 0.997 0.730 0.087 0.878

φw Wage markup MA 0.530 0.305 0.827 0.048 0.022 0.713

ρgz Spending on tech 0.947 0.490 1.348 1.961 0.224 2.118

ρa Preference 0.988 0.973 0.995 0.400 0.112 0.777

ρq Biased tech 0.994 0.988 0.997 0.992 0.962 0.998

ρz Neutral tech 0.942 0.927 0.961 0.923 0.898 0.996

ρd Depreciation 0.915 0.854 0.975 0.813 0.674 0.945

Standard deviations

σr Monetary policy 0.003 0.002 0.003 0.004 0.003 0.006

σp Price markup 1.012 0.593 2.109 0.707 0.031 1.798

σw Wage markup 0.023 0.017 0.065 0.025 0.053 4.405

σg Gov spending 0.029 0.026 0.031 0.034 0.024 0.050

σz Neutral tech 0.008 0.007 0.009 0.009 0.009 0.017

σa Preference 0.061 0.035 0.137 0.010 0.013 0.053

σq Biased tech 0.006 0.006 0.007 0.006 0.005 0.008

σd Depreciation 0.096 0.065 0.261 0.273 0.210 5.035

Note: “5%” and “95%” demarcate the low and high bounds of the 90% probability

interval.
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