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Abstract. We examine the sources of macroeconomic economic fluctuations by estimating

a variety of richly parameterized DSGE models within a unified framework that incorporates

regime switching both in shock variances and in the inflation target. We propose an efficient

methodology for estimating regime-switching DSGE models. Our counterfactual exercises

show that changes in the inflation target are not the main driving force of high inflation in the

1970s. The model that best fits the U.S. time-series data is the one with synchronized shifts

in shock variances across two regimes and the fit does not rely on strong nominal rigidities.

We provide evidence that a shock to the capital depreciation rate, which resembles a financial

shock, plays a crucial role in accounting for macroeconomic fluctuations.

I. Introduction

We examine the sources of macroeconomic fluctuations by estimating a number of regime-

switching models using modern Bayesian techniques in a unified dynamic stochastic general

equilibrium (DSGE) framework. The standard approach to analyzing business-cycle fluctua-

tions is the use of constant-parameter medium-scale DSGE models (Christiano, Eichenbaum,

and Evans, 2005; Levin, Onatski, Williams, and Williams, 2006; Smets and Wouters, 2007;

Del Negro, Schorfheide, Smets, and Wouters, 2007; Altig, Christiano, Eichenbaum, and

Linde, forthcoming). In this paper we generalize the standard approach by allowing time

variations in shock variances and in the central bank’s inflation target according to Markov-

switching processes. These time variations appear to be present in the U.S. macroeconomic
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time series. An important question is how significant the time variations are when we fit

the data to relatively large DSGE models with rich dynamic structures and shock processes

that are economically interpretable. If the answer is positive, the next equation is in what

dimension the time variations matter. To answer these questions, we estimate a number

of alternative models nested in this general framework using the Bayesian method and we

compare the fit of these models to the time series data in the postwar U.S. economy. The

best-fit model is then used to identify shocks that are important in driving macroeconomic

fluctuations.

Our approach yields several new results. We find strong empirical evidence in favor of the

DSGE model with two regimes in shock variances, where regime shifts in the variances are

synchronized. The models with constant parameters (i.e., no regime shifts), with independent

regime shifts in shock variances, or with more than two regimes do not fit to the data as well.

In our preferred model (i.e., the best-fit model) with two synchronized shock regimes, the

high-volatility regime was frequently observed in the period from the early 1970s through

the mid-1980s, while the low-volatility regime prevailed in most of the period from the mid-

1980s through 2007. This finding is broadly consistent with the well-known fact that the

U.S. economy experienced a general reduction in macroeconomic volatilities during the latter

sample period (Stock and Watson, 2003).

The fit of our preferred regime-switching DSGE model does not reply on strong nominal

rigidities. In particular, our estimates imply that the durations of the price and nominal

wage contracts last no more than 2 quarters of a year—much shorter than those reported in

the constant-parameter DSGE models in previous studies (Smets and Wouters, 2007). This

finding highlights the sensitivity of the estimates of some key structural parameters obtained

in models with no regime switching to specifications of the shock processes. When we allow

the shock variances to switch regimes, the model relies less on nominal rigidities to fit to the

data.

Neither does the fit of our preferred model reply on regime shifts in the inflation target.

Allowing the inflation target to shift between two regimes—either synchronized with or

independent of the shock regime switching—does not improve the model’s marginal data

density. This finding is robust to a variety of model specifications and it is consistent with

the conclusion from other works about changes in monetary policy in general (Stock and

Watson, 2003; Canova and Gambetti, 2004; Cogley and Sargent, 2005; Primiceri, 2005; Sims

and Zha, 2006; Justiniano and Primiceri, 2008).

Although a change in the inflation target is not favored by the data, we find that, in an

estimated DSGE model with regime switching in the inflation target, there are two distinct

inflation-target regimes with a high target of about 5% of annualized inflation and a low

target of about 2%. The probability of the high-target regime is near one in the first wave of

great inflation in the early 1970s, but the probability stays near zero in all other periods. This

finding corroborates those in Sargent, Williams, and Zha (2006) and Carboni and Ellison



SOURCES OF MACROECONOMIC FLUCTUATIONS 3

(2009), who emphasize the role of the government’s misconception about the unemployment-

inflation tradeoff in leading to the high inflation policy in the early 1970s. In our regime-

switching framework, however, all agents are fully rational. Although the high-target regime

was short lived (with the ergodic probability of about 3.5%), our counterfactual experiments

show that the existence of the high-target regime and the probability of switching to that

regime are important for explaining high inflation rates observed in the early 1970s, but not

in other periods.

In our best-fit model with two synchronized regimes in shock variances, we identify three

types of shocks that are important for macroeconomic fluctuations. These are a shock to

the growth rate of the total factor productivity (TFP), a shock to wage markups, and a

shock to the capital depreciation rate. Taken together, these three shocks account for about

70 − 80% of the variances of aggregate output, investment, and inflation at business cycle

frequencies. Other shocks such as monetary policy shocks, investment-specific technology

shocks, and price markup shocks are not as important. The TFP shocks and the wage markup

shocks are fairly standard and well understood in the DSGE literature, but the capital

depreciation shock is new. We provide some economic interpretations of a depreciation

shock in Section VIII.3.

In what follows, we briefly discuss our contributions in relation to the literature in Sec-

tion II. We then present, in Section III, the general regime-switching DSGE framework. In

Section IV, we present the system of equilibrium conditions and discuss our solution meth-

ods. In Section V, we describe the data and our empirical approach. As a methodological

contribution, we propose an efficient methodology for estimating regime-switching DSGE

models; we summarize and discuss several modern methods for obtaining accurate estimates

of marginal data densities for relatively large DSGE models. In Section VI, we compare

the fit of a number of models nested by our general DSGE framework, identify the best-fit

model, and report posterior estimates of the parameters in this model. In Section VII, we

assess the importance of changes in the inflation target regimes for explaining the high in-

flation rates observed in the 1970s based on a version of the DSGE model with two inflation

target regimes and with constant shock variances. In Section VIII, we discuss the economic

implications of our estimates in the best-fit model and identify the key sources of shocks

that drive macroeconomic fluctuations. We conclude in Section IX. We describe the data

used for our estimation in the Appendix A. We also provide online technical appendices that

describe the derivation of the equilibrium conditions, the log-linearized equations, and some

details of the solution and estimation methods.1

II. Related literature

The debate in the literature on the sources of macroeconomic fluctuations gives empha-

sis to whether shifts in monetary policy are the main sources of macroeconomic volatilities

1The online appendices are available at http://www.tzha.net/articles#TARGETCHANGE.
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(Clarida, Gaĺı, and Gertler, 2000; Lubik and Schorfheide, 2004; Stock and Watson, 2003;

Sims and Zha, 2006; Bianchi, 2008; Gambetti, Pappa, and Canova, 2008) or whether shocks

in investment-specific technology are more important than other shocks in driving macroeco-

nomic fluctuations (Fisher, 2006; Smets and Wouters, 2007; Justiniano and Primiceri, 2008).

Much of the disagreement stems from the use of different frameworks and different empirical

methods. Part of the literature focuses on reduced-form econometric models, part of it on

small-scale DSGE models, and part of it on medium-scale DSGE models. Some models as-

sume homogeneity in shock variances; others assume that shock variances are time-varying.

Some models are estimated with different subsamples to reflect shifts in policy or in shock

variances; other models are estimated with the entire sample. Given these differences in

the model framework and in the empirical approach, it is difficult to draw a firm conclusion

about the sources of macroeconomic fluctuations. The goal of the current paper is to provide

a systematic examination of the sources of macroeconomic fluctuations in one unified DSGE

framework that allows for regime shifts in shock variances and in monetary policy.

Our approach differs from that employed in the literature in several aspects. First, we aim

at fully characterizing the uncertainty across different models by examining different versions

of the DSGE model for robust analysis to substantiate our conclusion. Although estimating

a large set of models has not been performed in the literature, we think it is necessary to

examine the robustness of a conclusion like ours about potential sources of macroeconomic

fluctuations.

Second, our approach does not require splitting the sample to examine changes in monetary

policy, although it nests sampling-splitting as a special case. Unlike Sims and Zha (2006)

where the number of VAR parameters is relatively large and the inflation target is implicit,

our way of modeling policy changes takes the inflation target explicitly and gives a tightly

parameterized model that has the best chance to detect the importance of policy changes,

if it exists, in generating business-cycle fluctuations.

Third and methodologically, for fairly large DSGE models, especially for regime-switching

DSGE models, the posterior distribution tends to be very non-Gaussian, making it very

challenging to search for the global peak. We improve on earlier works such as Cogley and

Sargent (2005) and Justiniano and Primiceri (2008) by obtaining the estimate of parameters

at the posterior mode for each model. We show that economic implications can be seriously

distorted if the estimates are based on a lower posterior peak.

Fourth, there is a strand of literature that emphasizes the importance of changes in the

inflation target (for example, Favero and Rovelli (2003); Erceg and Levin (2003); Schorfheide

(2005); Ireland (2005). We follow this literature and focus on studying changes in the inflation

target instead of changes in coefficients in the monetary policy rule for both conceptual and

computational reasons. When agents take into account changes in monetary policy’s response

to inflation in forming their expectations, a solution method to the model is nonstandard

(Liu, Waggoner, and Zha, 2009). Indeed, it would be computationally infeasible for us to



SOURCES OF MACROECONOMIC FLUCTUATIONS 5

estimate a large set of DSGE models like what we do in the current paper since the solution

would require an iterative algorithm that can be time-consuming in Monte Carlo Markov

Chain (MCMC) simulations. Furthermore, indeterminacy is more prevalent in this kind of

regime-switching model than in the standard DSGE model (Farmer, Waggoner, and Zha,

2009). By modeling shifts in monetary policy as changes in the inflation target, we can

apply the standard method to solve the DSGE models (as shown in Section V). We have

nonetheless pushed the limits of our computational and analytical capacity because of a large

set of regime-switching models that we have estimated.

Finally, we use three new methods for computing marginal data densities in model com-

parison. Since these methods are based on different statistical foundations, it is essential

that all these methods give a numerically similar result to ensure that the estimate of a

marginal data density is unbiased and accurate (Sims, Waggoner, and Zha, 2008).

III. The Model

The model economy is populated by a continuum of households, each endowed with a unit

of differentiated labor skill indexed by i ∈ [0, 1]; and a continuum of firms, each producing

a differentiated good indexed by j ∈ [0, 1]. The monetary authority follows a feedback

interest rate rule, under which the nominal interest rate is set to respond to its own lag and

deviations of inflation and output from their targets. The policy regime st represented by

the time-varying inflation target switches between a finite number of regimes contained in

the set S, with the Markov transition probabilities summarized by the matrix Q = [qij ],

where qij = Prob(st+1 = i|st = j) for i, j ∈ S. The economy is buffeted by several sources of

shocks. The variance of each shock switches between a finite number of regimes denoted by

s∗t ∈ S∗ with the transition matrix Q∗ = [q∗ij ].

III.1. The aggregation sector. The aggregation sector produces a composite labor skill

denoted by Lt to be used in the production of each type of intermediate goods and a com-

posite final good denoted by Yt to be consumed by each household. The production of the

composite skill requires a continuum of differentiated labor skills {Lt(i)}i∈[0,1] as inputs, and

the production of the composite final good requires a continuum of differentiated intermedi-

ate goods {Yt(j)}j∈[0,1] as inputs. The aggregation technologies are given by

Lt =

[
∫ 1

0

Lt(i)
1

µwt di

]µwt

, Yt =

[
∫ 1

0

Yt(j)
1

µpt dj

]µpt

, (1)

where µwt and µpt determine the elasticity of substitution between the skills and between

the goods, respectively. Following Smets and Wouters (2007), we assume that

lnµwt = (1− ρw) lnµw + ρw lnµw,t−1 + σwtεwt − φwσw,t−1εw,t−1 (2)

and that

lnµpt = (1− ρp) lnµp + ρp lnµp,t−1 + σptεpt − φpσp,t−1εp,t−1, (3)
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where, for j ∈ {w, p}, ρj ∈ (−1, 1) is the AR(1) coefficient, φj is the MA(1) coefficient,

σjt ≡ σj(s
∗

t ) is the regime-switching standard deviation, and εjt is an i.i.d. white noise

process with a zero mean and a unit variance. We interpret µwt and µpt as the wage markup

and price markup shocks.

The representative firm in the aggregation sector faces perfectly competitive markets for

the composite skill and the composite good. The demand functions for labor skill i and for

good j resulting from the optimizing behavior in the aggregation sector are given by

Ld
t (i) =

[

Wt(i)

W̄t

]

−
µwt

µwt−1

Lt, Y d
t (j) =

[

Pt(j)

P̄t

]

−
µpt

µpt−1

Yt, (4)

where the wage rate W̄t of the composite skill is related to the wage rates {Wt(i)}i∈[0,1] of the

differentiated skills by W̄t =
[

∫ 1

0
Wt(i)

1/(1−µwt)di
]1−µwt

and the price P̄t of the composite good

is related to the prices {Pt(j)}j∈[0,1] of the differentiated goods by P̄t =
[

∫ 1

0
Pt(j)

1/(1−µpt)dj
]1−µpt

.

III.2. The intermediate good sector. The production of a type j good requires labor

and capital inputs. The production function is given by

Yt(j) = Kf
t (j)

α1 [ZtL
f
t (j)]

α2 , (5)

where Kf
t (j) and Lf

t (j) are the inputs of capital and the composite skill and the variable Zt

denotes a neutral technology shock, which follows the stochastic process

Zt = λt
zzt, ln zt = (1− ρz) ln z + ρz ln zt−1 + σztεzt, (6)

where ρz ∈ (−1, 1) measures the persistence, σzt ≡ σz(s
∗

t ) denotes the regime-switching

standard deviation, and εzt is an i.i.d. white noise process with a zero mean and a unit

variance. The parameters α1 and α2 measure the cost shares the capital and labor inputs.

Following Chari, Kehoe, and McGrattan (2000), we introduce some real rigidity by assuming

the existence of some firm-specific factors (such as land), so that α1 + α2 ≤ 1.

Each firm in the intermediate-good sector is a price-taker in the input market and a

monopolistic competitor in the product market where it sets a price for its product, taking

the demand schedule in (4) as given. We follow Calvo (1983) and assume that pricing

decisions are staggered across firms. Once a price is set, the firm has no other choice but

to supply its differentiated product to meet market demand at that price. The probability

that a firm cannot adjust its price is given by ξp. Following Woodford (2003), Christiano,

Eichenbaum, and Evans (2005), and Smets and Wouters (2007), we allow a fraction of firms

that cannot re-optimize their pricing decisions to index their prices to the overall price

inflation realized in the past period. Specifically, if the firm j cannot set a new price, its

price is automatically updated according to

Pt(j) = π
γp
t−1π

1−γpPt−1(j), (7)
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where πt = P̄t/P̄t−1 is the inflation rate between t − 1 and t, π is the steady-state inflation

rate, and γp measures the degree of indexation.

A firm that can renew its price contract chooses Pt(j) to maximize its expected discounted

dividend flows given by

Et

∞
∑

i=0

ξipDt,t+i[Pt(j)χ
p
t,t+iY

d
t+i(j)− Vt+i(j)], (8)

where Dt,t+i is the period-t present value of a dollar in a future state in period t+ i, Vt+i(j)

is the cost function, and the term χp
t,t+i comes from the price-updating rule (7) and is given

by

χp
t,t+i =

{

Πi
k=1π

γp
t+k−1π

1−γp if i ≥ 1

1 if i = 0.
(9)

In maximizing its profit, the firm takes as given the demand schedule

Y d
t+i(j) =

(

Pt(j)χ
p
t,t+i

P̄t+i

)−
µp,t+i

µp,t+i−1

Yt+i.

The first order condition for the profit-maximizing problem yields the optimal pricing rule

Et

∞
∑

i=0

ξipDt,t+iY
d
t+i(j)

1

µp,t+i − 1

[

µp,t+iΦt+i(j)− Pt(j)χ
p
t,t+i

]

= 0, (10)

where Φt+i(j) = ∂Vt+i(j)/∂Y
d
t+i(j) denotes the marginal cost function. In the absence of

markup shocks, µpt would be a constant and (10) implies that the optimal price is a markup

over an average of the marginal costs for the periods in which the price will remain effective.

Clearly, if ξp = 0 for all t, that is, if prices are perfectly flexible, then the optimal price would

be a markup over the contemporaneous marginal cost.

Cost-minimizing implies that the marginal cost function is given by

Φt(j) =

[

α̃(P̄trkt)
α1

(

W̄t

Zt

)α2
]

1

α1+α2

Yt(j)
1

α1+α2
−1
, (11)

where α̃ ≡ α−α1

1 α−α2

2 and rkt denotes the real rental rate of capital input. The conditional

factor demand functions imply that

W̄t

P̄trkt
=

α2

α1

Kf
t (j)

Lf
t (j)

, ∀j ∈ [0, 1]. (12)

III.3. Households. There is a continuum of households, each endowed with a differentiated

labor skill indexed by h ∈ [0, 1]. Household h derives utility from consumption and leisure.

We follow Blanchard and Kiyotaki (1987) and assume that each household is a price-taker

in the goods market and a monopolistic competitor in the labor market, where she sets

a nominal wage for her differentiated labor skill, taking as given the wage index and the

downward-sloping labor demand schedule in (4). The nominal wage-setting decisions by

households are staggered in the spirit of Calvo (1983). Once a nominal wage rate is set,
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the household has to supply labor to meet the market demand for her differentiated skill

at that wage rate (so quitting her job is not an option). We assume that there exists

financial instruments that provide perfect insurance for the households in different wage-

setting cohorts, so that the households make identical consumption and investment decisions

despite that their wage incomes may differ due to staggered wage setting.2 In what follows,

we impose this assumption and omit the household index for consumption and investment.

The utility function for household h ∈ [0, 1] is given by

E

∞
∑

t=0

βtAt

{

ln(Ct − bCt−1)−
Ψ

1 + η
Lt(h)

1+η

}

, (13)

where β ∈ (0, 1) is a subjective discount factor, Ct denotes consumption, Lt(h) denotes hours

worked, η > 0 is the inverse Frisch elasticity of labor hours, and b measures the importance

of habit formation. The variable At denotes a preference shock, which follows the stationary

process

lnAt = (1− ρa) lnA+ ρa lnAt−1 + σatεat, (14)

where ρa ∈ (−1, 1) is the persistence parameter, σat ≡ σa(s
∗

t ) is the regime-switching stan-

dard deviation, and εat is an i.i.d. white noise process with a zero mean and a unit variance.

In each period t, the household faces the budget constraint

P̄tCt +
P̄t

Qt
[It + a(ut)Kt−1] + EtDt,t+1Bt+1 ≤

Wt(h)L
d
t (h) + P̄trktutKt−1 +Πt +Bt − Tt. (15)

In the budget constraint, It denotes investment, Bt+1 is a nominal state-contingent bond that

represents a claim to one dollar in a particular event in period t + 1, and this claim costs

Dt,t+1 dollars in period t; Wt(h) is the nominal wage for h’s labor skill, Kt−1 is the beginning-

of-period capital stock, ut is the utilization rate of capital, Πt is the profit share, and Tt

is a lump-sum taxes used by the government to finance exogenous government spending.

The function a(ut) captures the cost of variable capital utilization. Following Christiano,

Eichenbaum, and Evans (2005) and Altig, Christiano, Eichenbaum, and Linde (forthcoming),

we assume that a(u) is increasing and convex. The term Qt denotes the investment-specific

technological change. Following Greenwood, Hercowitz, and Krusell (1997), we assume that

Qt contains a deterministic trend and a stochastic component. In particular,

Qt = λt
qqt, (16)

2To obtain complete risk-sharing among households in different wage-setting cohorts does not rely on

the existence of such (implicit) financial arrangements. As shown by Huang, Liu, and Phaneuf (2004), the

same equilibrium dynamics can be obtained in a model with a representative household (and thus complete

insurance) consisting of a large number of worker members. The workers supply their homogenous labor

skill to a large number of employment agencies, who transform the homogenous skill into differentiated skills

and set nominal wages in a staggered fashion.
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where λq is the growth rate of the investment-specific technological change and qt is an

investment-specific technology shock, which follows a stationary process given by

ln qt = (1− ρq) ln q + ρq ln qt−1 + σqtεqt, (17)

where ρq ∈ (−1, 1) is the persistence parameter, σqt ≡ σq(s
∗

t ) is the regime-switching standard

deviation, and εqt is an i.i.d. white noise process with a zero mean and a unit variance. The

importance of investment-specific technological change is also documented in Fisher (2006)

and Fernandez-Villaverde and Rubio-Ramirez (2007).

The capital stock evolves according to the law of motion

Kt = (1− δt)Kt−1 + [1− S(It/It−1)] It, (18)

where the function S(·) represents the adjustment cost in capital accumulation. We assume

that S(·) is convex and satisfies S(λqλ
∗) = S ′(λqλ

∗) = 0, where λ∗ = (λα1

q λα2

z )
1

1−α1 is the

steady-state growth rate of output and consumption. The term δt denotes the depreciation

rate of the capital stock and follows the stationary stochastic process

ln δt = (1− ρd) ln δ + ρd ln δt−1 + σdtεdt, (19)

where ρe ∈ (−1, 1) is the persistence parameter, σdt ≡ σd(s
∗

t ) is the regime-switching standard

deviaiton, and εdt is the white noise innovation with a zero mean and a unit variance.

We introduce this time variation in the depreciation rate to capture time-varying economic

obsolescence and exogenous changes in the quality of capital emphasized by Justiniano,

Primiceri, and Tambalotti (2011) and Gertler and Kiyotaki (2010).

The household takes prices and all wages but its own as given and chooses Ct, It, Kt, ut,

Bt+1, andWt(h) to maximize (13) subject to (15) - (18), the borrowing constraint Bt+1 ≥ −B

for some large positive number B, and the labor demand schedule Ld
t (h) described in (4).

The wage-setting decisions are staggered across households. In each period, a fraction

ξw of households cannot re-optimize their wage decisions and, among those who cannot re-

optimize, a fraction γw of them index their nominal wages to the price inflation realized in

the past period. In particular, if the household h cannot set a new nominal wage, its wage

is automatically updated according to

Wt(h) = πγw
t−1π

1−γwλ∗

t−1,tWt−1(h), (20)

where λ∗

t−1,t ≡
λ∗

t

λ∗

t−1

, with λ∗

t ≡ (Qα1

t Zα2

t )
1

1−α1 denoting the trend growth rate of aggregate

output (and the real wage). If a household h ∈ [0, 1] can re-optimize its nominal wage-setting

decision, it chooses W (h) to maximize the utility subject to the budget constraint (15) and

the labor demand schedule in (4). The optimal wage-setting decision implies that

Et

∞
∑

i=0

ξiwDt,t+iL
d
t+i(h)

1

µw,t+i − 1
[µw,t+iMRSt+i(h)−Wt(h)χ

w
t,t+i] = 0, (21)



SOURCES OF MACROECONOMIC FLUCTUATIONS 10

where MRSt(h) denotes the marginal rate of substitution between leisure and income for

household h and χw
t,t+i is defined as

χw
t,t+i ≡

{

Πi
k=1π

γw
t+k−1π

1−γwλ∗

t,t+i if i ≥ 1

1 if i = 0.
, (22)

where λ∗

t,t+i ≡
λ∗

t+i

λ∗

t
. In the absence of wage-markup shocks, µwt would be a constant and (21)

implies that the optimal wage is a constant markup over a weighted average of the marginal

rate of substitution for the periods in which the nominal wage remains effective. If ξw = 0,

then the nominal wage adjustments are flexible and (21) implies that the nominal wage is a

markup over the contemporaneous marginal rate of substitution.

III.4. The government and monetary policy. The government follows Ricardian fiscal

policy, with its spending financed by lump-sum taxes so that P̄tGt = Tt, where Gt denotes

the government spending in final consumption units. Denote by G̃t ≡ Gt

λ∗

t
the detrended

government spending, where

λ∗

t ≡ (Zα2

t Qα1

t )
1

1−α1 . (23)

We assume that G̃t follows the stationary stochastic process

ln G̃t = (1− ρg) ln G̃ + ρg ln G̃t−1 + σgtεgt + ρgzσztεzt, (24)

where we follow Smets and Wouters (2007) and assume that the government spending shock

responds to productivity shocks.

Monetary policy is described by a feedback interest rate rule that allows the possibility of

regime switching in the inflation target. The interest rate rule is given by

Rt = κRρr
t−1

[

rπ

(

πt

π∗(st)

)φπ
(

Yt

λ∗

t

)φy

]1−ρr

eσrtεrt, (25)

where Rt = [EtDt,t+1]
−1 denotes the nominal interest rate, π∗(st) denotes the regime-

dependent inflation target, r = λ∗/β denotes the steady-state real interest rate, and π

denotes the steady-state inflation rate. The constant terms ρr, φπ, and φy are policy param-

eters. The term κ is a constant that captures the steady-state value of detrended output in

the Taylor rule. In particular, κ = Ỹ −φy(1−ρr), where Ỹ is the steady-state detrended output.

The term εrt denotes the monetary policy shock, which follows an i.i.d. normal process with

a zero mean and a unit variance. The term σrt ≡ σr(s
∗

t ) is the regime-switching standard

deviation of the monetary policy shock. We assume that the 8 shocks εwt, εpt, εzt, εqt, εdt,

εat, εrt, and εgt are mutually independent.

III.5. Market clearing and equilibrium. In equilibrium, markets for bond, composite

labor, capital stock, and composite goods all clear. Bond market clearing implies that
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Bt = 0 for all t. Labor market clearing implies that
∫ 1

0
Lf
t (j)dj = Lt. Capital market

clearing implies that
∫ 1

0
Kf

t (j)dj = utKt−1. Composite goods market clearing implies that

Ct +
1

Qt
[It + a(ut)Kt−1] +Gt = Yt, (26)

where aggregate output is related to aggregate primary factors through the aggregate pro-

duction function

GptYt = (utKt−1)
α1(ZtLt)

α2 , (27)

with Gpt ≡
∫ 1

0

(

Pt(j)
P̄t

)

−
µpt

µpt−1

1

α1+α2 dj measuring the price dispersion.

Given fiscal and monetary policy, an equilibrium in this economy consists of prices and

allocations such that (i) taking prices and all nominal wages but its own as given, each

household’s allocation and nominal wage solve its utility maximization problem; (ii) taking

wages and all prices but its own as given, each firm’s allocation and price solve its profit

maximization problem; (iii) markets clear for bond, composite labor, capital stock, and final

goods.

IV. Equilibrium Dynamics

IV.1. Stationary equilibrium and the deterministic steady state. We focus on a sta-

tionary equilibrium with balanced growth. On a balanced growth path, output, consumption,

investment, capital stock, and the real wage all grow at constant rates, while hours remain

constant. Further, in the presence of investment-specific technological change, investment

and capital grow at a faster rate. To induce stationarity, we transform variables so that

Ỹt =
Yt

λ∗

t

, C̃t =
Ct

λ∗

t

, w̃t =
Wt

P̄tλ∗

t

, Ĩt =
It

Qtλ
∗

t

, K̃t =
Kt

Qtλ
∗

t

,

where λ∗

t is the underlying trend for output, consumption, and the real wage given by (23).

Along the balanced growth path, as noted by Greenwood, Hercowitz, and Krusell (1997),

the real rental price of capital keeps falling since the capital-output ratio keeps rising. The

rate at which the rental price is falling is given by λq. Thus, the transformed variable

r̃kt = rktQt, that is, the rental price in consumption unit, is stationary. Further, the marginal

utility of consumption is declining, so we define Ũct = Uctλ
∗

t to induce stationarity.

The steady state in the model is the stationary equilibrium in which all shocks are shut

off, including the “regime shocks” to the inflation target. To derive the steady state, we

represent the finite Markov switching process with a vector AR(1) process (Hamilton, 1994).

Specifically, the inflation target can be written as

π∗(st) = [π∗(1), π∗(2)]est, (28)

where π∗(j) is the inflation target in regime j ∈ {1, 2} and

est =

[

1{st = 1}

1{st = 2}

]

, (29)
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with 1{st = j} = 1 if st = j and 0 otherwise. As shown in Hamilton (1994), the random

vector est follows an AR(1) process:

est = Qest−1
+ vt, (30)

where Q is the transition matrix of the Markov switching process and the innovation vector

has the property that Et−1vt = 0. In the steady state, vt = 0 so that (30) defines the

ergodic probabilities for the Markov process and, from (28), the steady-state inflation π is

the ergodic mean of the inflation target such that the steady state nominal interest rate is

R = r + π. Given π, the derivations for the rest of the steady-state equilibrium conditions

are straightforward.

IV.2. Linearized equilibrium dynamics. To solve for the equilibrium dynamics, we log-

linearize the equilibrium conditions around the deterministic steady state. We use a hatted

variable x̂t to denote the log-deviations of the stationary variable Xt from its steady-state

value (i.e., x̂t = ln(Xt/X)).

Linearizing the optimal pricing decision rule implies that

π̂t − γpπ̂t−1 =
κp

1 + ᾱθp
(µ̂pt + m̂ct) + βEt[π̂t+1 − γpπ̂t], (31)

where θp ≡
µp

µp−1
, κp ≡

(1−βξp)(1−ξp)
ξp

, ᾱ ≡ 1−α1−α2

α1+α2
, and

m̂ct =
1

α1 + α2

[α1r̂kt + α2ŵt] + ᾱŷt. (32)

This is the standard price Phillips-curve relation generalized to allow for partial dynamic

indexation. In the special case without indexation (i.e., γp = 0), this relation reduces to the

standard forward-looking Phillips curve relation, under which the price inflation depends on

the current-period real marginal cost and the expected future inflation. In the presence of

dynamic indexation, the price inflation also depends on its own lag.

Linearizing the optimal wage-setting decision rule implies that

ŵt − ŵt−1 + π̂t − γwπ̂t−1 =
κw

1 + ηθw
(µ̂wt + m̂rst − ŵt) + βEt[ŵt+1 − ŵt + π̂t+1 − γwπ̂t], (33)

where ŵt denotes the log-deviations of the real wage, m̂rst = ηl̂t − Ûct denotes the marginal

rate of substitution between leisure and consumption, θw ≡ µw

µw−1
, and κw ≡ (1−βξw)(1−ξw)

ξw
is

a constant. To help understand the economics of this equation, we rewrite this relation in

terms of the nominal wage inflation:

π̂w
t − γwπ̂t−1 =

κw

1 + ηθw
(µ̂wt + m̂rst − ŵt) + βEt(π̂

w
t+1 − γwπ̂t)

+
1

1− α1
[α1(∆ẑt − βEt∆ẑt+1) + α2(∆q̂t − βEt∆q̂t+1)]. (34)

where π̂w
t = ŵt − ŵt−1 + π̂t + ∆λ̂∗

t denotes the nominal wage inflation. This nominal-wage

Phillips curve relation parallels that of the price-Phillips curve and has similar interpreta-

tions.
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The rest of the linearized equilibrium conditions are summarized below:

q̂kt = S ′′(λI)λ
2
I

{

∆ît − βEt∆ît+1

+
1

1− α1
[α2(∆ẑt − βEt∆ẑt+1) + ∆q̂t − βEt∆q̂t+1]

}

, (35)

q̂kt = Et

{

∆ât+1 +∆Ûc,t+1 −
1

1− α1

[α2∆ẑt+1 +∆q̂t+1]

+
β

λI

[

(1− δ)q̂k,t+1 − δδ̂t+1 + r̃kr̂k,t+1

]

}

, (36)

r̂kt = σuût, (37)

0 = Et

[

∆ât+1 +∆Ûc,t+1 −
1

1− α1
[α2∆ẑt+1 + α1∆q̂t+1] + R̂t − π̂t+1

]

, (38)

k̂t =
1− δ

λI

[

k̂t−1 −
1

1− α1
(α2∆ẑt +∆q̂t)

]

−
δ

λI
δ̂t +

(

1−
1− δ

λI

)

ît, (39)

ŷt = cy ĉt + iy ît + uyût + gy ĝt, (40)

ŷt = α1

[

k̂t−1 + ût −
1

1− α1
(α2∆ẑt +∆q̂t)

]

+ α2 l̂t, (41)

ŵt = r̂kt + k̂t−1 + ût −
1

1− α1
(α2∆ẑt +∆q̂t)− l̂t, (42)

where (35) is the linearized investment decision equation with q̂kt denoting the shadow value

of existing capital (i.e., Tobin’s Q) and the ∆ denoting the first-difference operator (so that

∆xt = xt−xt−1); (36) is the linearized capital Euler equation; (37) is the linearized capacity

utilization decision equation with σu ≡ a′′(1)
a′(1)

denoting the curvature the function a(u) eval-

uated at the steady state; (38) is the linearized bond Euler equation; (39) is the linearized

law of motion for the capital stock; (40) is the linearized aggregate resource constraint, with

the steady-state ratios given by cy =
C̃
Ỹ
, iy =

Ĩ
Ỹ
, uy =

r̃kK̃

Ỹ λI
, and gy =

G̃
Ỹ
; (41) is the linearized

aggregate production function; and (42) is the linearized factor demand relation.

Finally, the linearized interest rate rule is given by

R̂t = ρrR̂t−1 + (1− ρr) [φπ(π̂t − π̂∗(st)) + φyŷt] + σrtεrt, (43)

where the term π̂∗(st) ≡ log π∗(st)− log π denotes the deviations of the inflation target from

its ergodic mean.

V. Estimation Approach

We estimate the parameters in our model using the Bayesian method. We describe a

general empirical strategy so that the method can be applied to other regimes-switching

DSGE models. As shown in the online independent appendices, our model contains twenty

seven variables. Adding the five lagged variables ŷt−1, ĉt−1, ît−1, ŵt−1, and q̂t−1 to the list

gives a total of thirty three variables. We denote all these state variables by the vector ft
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where ft is so arranged that the first eight variables are ŷt, ĉt, ît, ŵt, q̂t, π̂t, ℓ̂t, and R̂t and the

last five variables are ŷt−1, ĉt−1, ît−1, ŵt−1, and q̂t−1.

We apply the relation (28) to the policy rule (43), where the vector est defined in (29)

follows a vector AR(1) process described in (30). Expanding the log-linearized system with

the additional variables represented by est maintains the log-linear form in which all coef-

ficients are constant (i.e., independent of regime changes). A standard solution technique,

such as the method proposed by Sims (2002), can be directly utilized to solve our DSGE

model. The solution leads to the following VAR(1) form of state equations:3

ft = c(st) + Fft−1 + C(s∗t )ǫt, (44)

where ǫt = [ǫrt, ǫpt, ǫwt, ǫgt, ǫzt, ǫat, ǫdt, ǫqt]
′, and c(st) is a vector function of the inflation

targets π∗(st) and the elements in the transition matrix Q, and C(s∗t ) is a matrix function

of σrt(s
∗

t ), σpt(s
∗

t ), σwt(s
∗

t ), σgt(s
∗

t ), σzt(s
∗

t ), σat(s
∗

t ), σdt(s
∗

t ), and σqt(s
∗

t ).

It follows from (44) that the solution to our DSGE model depends on the composite regime

(st, s
∗

t ). If s
∗

t is assumed to be completely synchronized with st as in Schorfheide (2005), then

the composite regime collapses to st. To simplify our notation and keep analytical expressions

tractable, we will use st for the rest of this section to represent a composite regime that may

mean (st, s
∗

t ), so long as no confusion about the notation arises.

Our estimation is based on the 1959:I-2007:IV quarterly time-series observations on 8 U.S.

aggregate variables:4 real per capita GDP (Y Data
t ), real per capita consumption (CData

t ), real

per capita investment (IData
t ), real wage (wData

t ), the investment-specific technology (i.e., the

biased technology Qt), the quarterly GDP-deflator inflation rate (πData
t ), per capita hours

(LData
t ), and the (annualized) federal funds rate (FFRData

t ). Note that IData
t corresponds

to It
Qt

in the model (i.e., investment measured in units of consumption goods); a detailed

description of the data is in Appendix A. These data are represented by the following vector

of observable variables:

yt =
[

∆ lnY Data
t ,∆ lnCData

t ,∆ ln IData
t ,∆ lnwData

t , ln πData
t ,∆ lnQData

t , lnLData
t , FFR

Data
t

400

]

′

.

The observable vector is connected to the model (state) variables through the measurement

equations

yt = a+Hft,

where

a =
[

lnλ∗, lnλ∗, lnλ∗, lnλ∗, ln π, lnλq, lnL, lnR
]

′

. (45)

Given the aforementioned regime-switching state space form, one can estimate the model by

following the general estimation methodology of Sims, Waggoner, and Zha (2008).

3The reduced form from solving the DGGE model will in general have the constant term depending on

both st and st−1, because the term vt in (30), which has to be substituted out, depends on st−1. One can

show, however, that all the terms involving st−1 will be cancelled out.
4We did not include the sample after 2007 because it is beyond the scope of this paper to address the

current financial crisis and the effect of monetary policy at the lower zero bound.
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V.1. Three methods for computing marginal data densities. To evaluate the model’s

fit to the data and compare it to the fit of other models, one wishes to compute the marginal

data density implied by the model. To keep the notation simple, let θ represent a collection

of all model parameters including all free parameters in the transition matrix. The marginal

data density is defined as

p(YT ) =

∫

p(YT | θ)p(θ) dθ, (46)

where the likelihood function p(YT | θ) can be evaluated recursively. For many empirical

models, the modified harmonic mean (MHM) method of Gelfand and Dey (1994) is a widely

used method to compute the marginal data density. The MHM method used to approximate

(46) numerically is based on a theorem that states

p(YT )
−1 =

∫

Θ

h(θ)

p(YT | θ)p(θ)
p(θ | YT )dθ, (47)

where Θ is the support of the posterior probability density and h(θ), often called a weighting

function, is any probability density whose support is contained in Θ. Denote

m(θ) =
h(θ)

p(YT | θ)p(θ)
.

A numerical evaluation of the integral on the right hand side of (47) can be accomplished in

principle through the Monte Carlo (MC) integration

p̂(YT )
−1 =

1

N

N
∑

i=1

m(θ(i)), (48)

where θ(i) is the ith draw of θ from the posterior distribution represented by p(θ | YT ). If

m(θ) is bounded above, the rate of convergence from this MC approximation is likely to be

practical.

Geweke (1999) proposes a Gaussian function for h(·) constructed from the posterior simu-

lator. The likelihood and posterior density functions for our medium-scale DSGE model turn

out to be quite non-Gaussian and there exist zeros of the posterior pdf in the interior points

of the parameter space. In this case, the standard MHM procedure tends to be unreliable

as the MCMC draws are likely to be dominated by a few draws as the number of draws

increase. Sims, Waggoner, and Zha (2008) proposes a truncated non-Gaussian weighting

function for h(·) to remedy the problem. This weighting function seems to work well for the

non-Gaussian posterior density.

In addition to the method of Sims, Waggoner, and Zha (2008), we use the unpublished

method developed by Ulrich Müeller at Princeton University. The Müeller method also

depends crucially on a good choice of the weighting function h(θ). To summarize the Müeller

method for computing the marginal data density, we note that p(θ | YT ) is the posterior pdf

of of unknown form. Let p∗(θ) be the posterior kernel (not pdf) such that p∗(θ | YT ) = p(YT |

θ)p(θ). Thus, p(θ | YT ) = c∗p∗(θ | YT ), where c∗ = p(YT )
−1.
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Given any parameter value of θ, we know how to calculate the likelihood function p(YT | θ),

the prior p(θ), and the kernel p∗(θ | YT ). Our objective, however, is to obtain an accurate

estimate of the marginal data density p(YT ), which amounts to computing the constant term

c∗. To achieve this goal, we first choose the weighting pdf h(θ) and then construct the

function f(c) as

f(c) = Eh

[

1

{

cp∗(θ)

h(θ)
< 1

}(

1−
cp∗(θ)

h(θ)

)]

−

Ep

[

1

{

h(θ)

cp∗(θ)
< 1

}(

1−
h(θ)

cp∗(θ)

)]

,

where 1 {x} is an indicator function that returns to 1 if x is true and 0 if false, c is a positive

real number, Eh is a mathematical expectation operator with respect to the weighting dis-

tribution represented by h(θ), and Ep is a mathematical expectation operator with respect

to the posterior distribution represented by p(θ | YT ). One can show that the function has

the following properties:

• f(c) is monotonically decreasing in c;

• f(0) = 1 and f(∞) = −1.

Given these properties, one can use a bisection method to find an estimate of c∗ where

f(c∗) = 0.

To implement the Müeller method, it is important to bear in mind that although we do not

know the functional form of the posterior pdf p(θ | YT ), we can draw from this distribution

through MCMC simulations. Let θ(i) be the ith draw of θ from the posterior distribution with

a total of Np draws and θ(j) be the jth draw of θ from the weighting distribution with a total

of Nh draws . The function value f(c) can be approximated through numerical integration.

Denote this approximation by f̂(c), which can computed as

f̂(c) =
1

Nh

Nh
∑

j=1

[

1

{

cp∗(θ(j))

h(θ(j))
< 1

}(

1−
cp∗(θ(j))

h(θ(j))

)]

−

1

Np

Np
∑

j=1

[

1

{

h(θ(i))

cp∗(θ(i))
< 1

}(

1−
h(θ(i))

cp∗(θ(i))

)]

.

Posterior draws are computationally more expensive than draws from the weighting pdf.

Once all these draws are made, however, the calculation of f̂(c) is trivial for any positive

value of c. The estimate of c∗ = p(YT )
−1 such that f̂(c∗) = 0 can be found by using a

bisection method.

A third method we use is bridge sampling of Meng and Wong (1996). The bridge-sampling

method has been often regarded as one of the most reliable methods for computing the Bayes

factor. Since these three methods are developed from different mathematical relationships,

we recommend using all these methods to ensure that the estimated value of the marginal

data density is numerically similar across methods.
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Because the posterior density function is very non-Gaussian and complicated in shape, it is

all the more important to find the posterior mode via an optimization routine. The estimate

of the mode not only represents the most likely value (and thus the posterior estimate) but

also serves as a crucial starting point for initializing different chains of MCMC draws.

For various DSGE models studied in this paper, finding the mode has proven to be a

computationally challenging task. The optimization method we use combines the block-wise

BFGS algorithm developed by Sims, Waggoner, and Zha (2008) and various constrained

optimization routines contained in the commercial IMSL package. The block-wise BFGS

algorithm, following the idea of Gibbs sampling and EM algorithm, breaks the set of model

parameters into subsets and uses Christopher A. Sims’s csminwel program to maximize the

likelihood of one set of the model’s parameters conditional on the other sets.5 Maximization

is iterated at each subset until it converges. Then the optimization iterates between the

block-wise BFGS algorithm and the IMSL routines until it converges. The convergence

criterion is the square root of machine epsilon.

Thus far we have described the optimization process for only one starting point.6 Our

experience is that without such a thorough search, one can be easily misled to a much lower

posterior value (e.g., a few hundreds lower in log value than the posterior peak). We thus

use a set of cluster computing tools described in Ramachandran, Urazov, Waggoner, and

Zha (2007) to search for the posterior mode. We begin with a grid of 100 starting points;

after convergence, we perturb each maximum point in both small and large steps to generate

additional 20 new starting points and restart the optimization process again; the posterior

estimates attain the highest posterior density value. The other converged points typically

have much lower likelihood values by at least a magnitude of hundreds of log values. For each

DSGE model, the peak value of the posterior kernel and the mode estimates are reported.

V.2. Priors. We set three parameters a priori. We set the steady-state government spend-

ing to output ratio at gy = 0.18. We follow Justiniano and Primiceri (2008) and fix the

persistence of the government spending shock process at ρg = 0.99. As noted by Smets and

Wouters (2007), all these government parameter are difficult to estimate unless government

spending is included in the set of measurement equations. Finally, we normalize and fix

the steady-state hours worked at L = 0.2. We estimate all the remaining parameters. Ta-

bles 3 and 4 summarize the prior distributions for the structural parameters and the shock

parameters.

Our priors are chosen to be more flexible and less tight than those in the previous literature.

Specifically, instead of specifying the mean and the standard deviation, we use the 90%

5The csminwel program can be found on http://sims.princeton.edu/yftp/optimize/.
6For the no-switching (constant-parameter) DSGE model, it takes a couple of hours to find the posterior

peak. While the model with two-regime shock variances takes about 20 hours to converge, the model with

two-regime inflation targets and two-regime two-regime shock variances takes four times longer.
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probability interval to back out the hyperparameter values of the prior distribution.7 The

intervals are generally set wide enough to allow the possibility of multiple posterior peaks

(Del Negro and Schorfheide, 2008). Our approach is also necessary to deal with skewed

distributions and allow for some reasonable hyperparameter values in certain distributions

(such as the Inverse-Gamma) where the first two moments may not exist. The probability

intervals reported in Table 3 cover the calibrated value of each parameter.

We begin with the preference parameters b, η, and β. Our prior for the habit-persistence

parameter b follows the Beta distribution. We choose the 2 hyper-parameters of the Beta

distribution such that the lower bound for b (0.05) has a cumulative probability of 5% and

the upper bound (0.948) has a cumulative probability of 95%. This 90% probability interval

for b covers the values used by most economists (for example, Boldrin, Christiano, and

Fisher (2001) and Christiano, Eichenbaum, and Evans (2005)). Our prior for the inverse

Frisch elasticity η follows the Gamma distribution. We choose the 2 hyper-parameters of

the Gamma distribution such that the lower bound (0.2) and the upper bound (10.0) of η

correspond to the 90% probability interval. This prior range for η implies that the Frisch

elasticity lies between 0.1 and 5, a range broad enough to cover the values based on both

microeconomic evidence (Pencavel, 1986) and macroeconomic studies (Rupert, Rogerson,

and Wright, 2000). Our prior for the transformed subjective discount factor χβ ≡ 100( 1
β
−1)

follows the Gamma distribution, with the hyper-parameters appropriately chosen such that

the bounds for the 90% probability interval of χβ are 0.2 and 4.0. The implied value of β

lies in the range between 0.9615 and 0.998, which nests the values obtained by Smets and

Wouters (2007) (β = 0.9975) and Altig, Christiano, Eichenbaum, and Linde (forthcoming)

(β = 0.9926).

Next, we discuss the prior distributions for the technology parameters α1, α2, λq, λ∗, σu, S
′′,

and δ. Our priors for the labor share and capital share both follow the Beta distribution with

the restriction α1 + α2 ≤ 1 so that the production technology requires firm-specific factors

(Chari, Kehoe, and McGrattan, 2000). Specifically, the bounds for the α1 values in the 90%

probability interval are 0.15 and 0.35 and those for α2 are 0.35 and 0.75. With the restriction

α1 + α2 ≤ 1, however, the joint 90% probability region would be somewhat different. We

assume that the priors for the (transformed) trend growth rates of the investment-specific

technology and the neutral technology both follow the Gamma distribution, with the 5%

and 95% bounds given by 0.1 and 1.5 respectively. These values imply that, with 90%

probability, the prior values for the trend growth rates λq and λ∗ lie in the range between

1.001 and 1.015 (corresponding to annual rates of 0.4% and 6%, respectively). We assume

that the priors for the capacity utilization parameter σu and the investment adjustment cost

parameter S ′′ both follow the Gamma distribution, with the lower bounds given by 0.5 and

7The program for backing out the hyperparameter values of a given prior can be found at https:

//webdrive.service.emory.edu/users/tzha/ProgramCode/ProgramCode.html under “Mat-

lab library.”
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0.1 and the upper bounds given by 3.0 and 5.0, respectively. These 90% probability ranges

cover the values obtained, for example, by Christiano, Eichenbaum, and Evans (2005) and

Smets and Wouters (2007). We assume that the prior for the average annualized depreciation

rate follows the Beta distribution with the 90% probability range lying between 0.05 and

0.20.

Third, we discuss the prior distributions for the parameters that characterize price and

nominal wage setting in the model. These include the average price markup µp, the average

wage markup µw, the Calvo probabilities of non-adjustment in pricing ξp and in wage-setting

ξw, and the indexation parameters γp and γw. The priors for the net markups µp − 1 and

µw − 1 both follow the Gamma distribution with the 90% probability range covering the

values between 0.01 and 0.5. This range covers most of the calibrated values of the markup

parameters used in the literature (e.g., Basu and Fernald (2002), Rotemberg and Woodford

(1997), Huang and Liu (2002)). The priors for the price and wage duration parameters ξp and

ξw both follow the Beta distribution with the 90% probability range between 0.1 and 0.75.

Under this prior distribution, the nominal contract durations vary, with 90% probability,

between 1.1 quarters and 4 quarters. This range covers the values of the frequencies of price

and wage adjustments used in the literature (e.g., Bils and Klenow (2004), Taylor (1999)).

The priors for the indexation parameters γp and γw both follow the uniform distribution

with the 90% probability range lying between 0.05 and 0.95. In this sense, we have loose

priors on these indexation parameters, the range of which covers those used in most studies

(e.g., Christiano, Eichenbaum, and Evans (2005), Smets and Wouters (2007), and Woodford

(2003)).

Finally, we discuss the coefficients in the monetary policy rule, including ρr, φπ, and φy.

The prior for the interest-rate smoothing parameter ρr follows the Beta distribution with

the 90% probability range between 0.05 and 0.948. The prior for the inflation coefficient φπ

follows the Gamma distribution with the 90% probability range between 0.5 and 5.0. The

prior for the output coefficient φy follows the Gamma distribution with the 90% probability

range between 0.05 and 3.0. This range includes the values obtained by Clarida, Gaĺı, and

Gertler (2000) and others. These prior values allow for an indeterminate region. When

the equilibrium is indeterminate, we follow Boivin and Giannoni (2006) and use the MSV

solution. In our MCMC simulations, however, there is practically little probability for the

parameters to be in the indeterminate region.

Our priors for the AR(1) coefficients for the neutral and biased technology shocks ρq and

ρz are uniformly distributed in the [0, 1] interval. The AR(1) coefficients for all other shocks

and the MA(1) coefficients for the price and wage markup shocks follow the Beta distribution

with the 5%-95% probability range given by [0.05, 0.948]. The prior for the parameter ρgz
follows the Gamma distribution with the 90% probability range given by [0.2, 3.0]. The

standard deviations of each of the 8 shocks follow the Inverse Gamma distribution with the

90% probability range given by [0.0005, 1.0]. This probability range implies a more agnostic
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prior than Smets and Wouters (2007) and Justiniano and Primiceri (2008). Such an agnostic

prior is needed to allow for possible large changes in shock variances across regimes, as found

in Sims and Zha (2006).

We have experimented with different priors. In one alternative prior, we follow the litera-

ture and make a prior on the persistence parameters in shock processes much tighter towards

zero, such as the Beta(1, 2) probability density. Our conclusions hold true for these priors

as well.

VI. Empirical Results

In this section, we report our main empirical findings. We compare in Section VI.1 the

empirical fit of a variety of models nested by our general regime-switching DSGE framework.

We then report in Section VI.2 the estimation results in our best-fit model and highlight the

difference of these estimates from some alternative models.

VI.1. Model Fit. The first set of results to discuss is measures of model fit, with the

comparison based on maximum log posterior densities adjusted by the Schwarz criterion.8

Table 1 reports Schwarz criteria for different versions of our DSGE model (the column

“Baseline”) and for models with the restriction that all the persistence parameters in both

price markup and wage markup processes are set to zero (the column “Restricted”).

Table 1 shows that the model with regime shifts in shock variances only (DSGE-2v) is the

best-fit model, much better than the constant-parameter DSGE model (DSGE-con). The

Schwarz criterion for the baseline DSGE-2v model is 5963.03, compared to 5859.71 for the

DSGE-con model. When we allow the inflation target to switch regimes while holding the

shock variances constant (DSGE-2c), the model’s fit does not improve upon the constant-

parameter DSGE model. When we allow both the inflation target and shock variances to

switch regimes with the same Markov process (i.e., regime switching is synchronized), the

model (DSGE-2cv) does better than the one with regime switching in the inflation target

alone, but it does not improve upon the baseline DSGE-2v model with regime shifts in the

shock variances only. When we relax the assumption that switches in the shock regime and

those in the inflation target regime are synchronized and compute the Schwarz criterion for

the model with the target regime and the shock regime independent of each other (DSGE-

2c2v), we find that the model’s fit does not improve relative to either the DSGE-2cv model

with synchronized regime shifts in the inflation target and the shock variances or the baseline

DSGE-2v model with synchronized regime shifts in shock variances only. We have also

examined the possibility of 3 shock regimes instead of 2. We find that the 3-regime model

(DSGE-3v) does not improve upon the baseline 2-regime model (DSGE-2v).

We have also estimated models with shock variances following independent Markov switch-

ing processes. This scenario approximates stochastic volatility models, where each shock

8The Schwarz criterion is similar to the Laplace approximation used by Smets and Wouters (2007).
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variance has its own independent stochastic process (Tauchen, 1986; Sims, Waggoner, and

Zha, 2008). In addition, we have grouped a subset of shock variances having the same

Markov processes. None of these models fits to the data better than our baseline DSGE-2v

model. For example, when we allow regimes associated with the variances of the two technol-

ogy shocks to be independent of the regime switching processes of the other shock variances

(DSGE-2v2v), we obtain a Schwarz criterion of 5958.18, which is lower than that of the base-

line DSGE-2v model (5963.03). In short, the data favor the parsimoniously-parameterized

model with shock variances switching regimes simultaneously.

The last column in Table 1 shows that the model with regime changes in shock vari-

ances only continues to dominate all the other models, when the persistence parameters in

both price and wage markup shock processes are restricted to zero. In particular, the model

with the target switching regimes (DSGE-2c) does not improve upon the constant-parameter

model. Of course, all these restricted models fit to the data much worse than the correspond-

ing baseline models, implying that persistent shock processes are important in fitting the

data.

Finally, we have estimated a number of models with persistence parameters in other shock

processes set to zero and with habit and indexation parameters set to zero. The model with

synchronized regimes in shock variances continue to outperform other models in fitting the

data.

The relative performance of the alternative DSGE models in fitting the data does not

change when we look at the marginal data density (MDD). Table 2 reports the MDD for

each of the alternative models. The table shows that the model with simultaneous regime

shifts in shock variances (DSGE-2v) is the best-fit model not only in terms of the Schwarz

criterion, but also in terms of the marginal data density. In particular, the DSGE-2v model’s

MDD is 5832.38, much higher than that of the DSGE-con model (whose MDD is 5741.24).

The model with regime switching in the inflation target alone (DSGE-2c) slightly outperforms

the constant parameter model, but substantially under-performs the DSGE-2v model. With

regime shifts in shock variances, introducing regime shifts in the inflation target synchronized

with regime shifts in shock variances (DSGE-2cv) or allowing the inflation target to follow a

Markov switching process independent of shock regimes (DSGE-2c2v) does not improve the

marginal data density relative to the DSGE-2v model.

Our estimation results attribute the goodness of fit for both DSGE-2cv and DSGE-2c2v

models to significant shifts in shock variances, not shifts in inflation targets. In DSGE-2cv,

the point estimates indicate that the inflation target is 2.18% for one regime and 1.70% for

the other regime. In DSGE-2c2v, the inflation target is 2.4% for one regime and 2.1% for

the other regime. The difference between the two inflation-target regimes are statistically
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insignificant. These results explain why incorporating regime shifts in the inflation target in

the presence of heteroskadasticity does not help improve the model’s fit.9

VI.2. Estimates of Structural Parameters. We first discuss our best-fit model “DSGE-

2v.” The model is similar to that in Smets and Wouters (2007) with six notable exceptions.

First, we introduce a source of real rigidity in the form of firm-specific factors, which replaces

the kinked demand curves considered by Smets and Wouters (2007). Second, we introduce

trend growth in the investment-specific technological change to better capture the data,

in which the relative price of investment goods (e.g., equipment and software) has been

declining for most of the postwar period, while in Smets and Wouters (2007) the investment-

specific technological changes have no trend component. We use the observed time series

of biased technological changes in our estimation, while Smets and Wouters (2007) treat

these changes as a latent variable. Third, we introduce the depreciation shock that acts as a

wedge in the capital-accumulation Euler equation. Fourth, the preference shock in our model

enters all intertemporal decisions, including choices of the nominal bond, the capital stock,

and investment, while Smets and Wouters (2007) introduce a “risk-premium shock” that

enters the bond Euler equation only and does not affect other intertemporal decisions. Fifth,

in the interest rate rule, we assume that the nominal interest rate responds to deviations

of inflation from its target and detrended output, while in Smets and Wouters (2007) the

interest rate rule targets inflation, output gap, and the growth rate of output gap. Finally,

we allow for heteroscadasticity of structural shocks to obtain the accurate estimate of the

role of a particular shock in explaining macroeconomic fluctuations. All these distinctions

may explain some of the differences between our estimated results and theirs.

Tables 3 and 4 report the estimates of the model parameters. The data are informative

about many structural parameters. Among the three preference parameters, the estimate for

habit persistence (b) is 0.91 with the tight error bands. The estimate for η is 2.89, implying

a Frisch elasticity of 0.35 and consistent with most microeconomic studies. The probability

interval indicates that η can be as high as 8.38. The estimate for the subjective discount

factor β is 0.998 (the same as the value obtained by Smets and Wouters (2007)) with the

tight probability interval [0.996, 0.999].

Among the technology parameters, the estimate for α1 (0.153) with the upper error band

(0.216) is close to the estimate obtained by Smets and Wouters (2007) (0.19). Because of the

constraint α1+α2 ≤ 1, the estimate for α2 is (0.835). These posterior estimates suggest that

the data prefer a model specification with (near) constant-returns production technology.

The estimated trend growth rate for the investment-specific technological change (λq) is 4%

per annum, slightly higher than the calibrated value obtained by Greenwood, Hercowitz, and

9The posterior distribution is very non-Gaussian and full of local peaks. At some local peaks (whose

posterior kernel values are more than 50 in log value below the posterior value), we obtain distinctly different

target values.
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Krusell (1997) because we include the data in the late 1990s until 2007 when the investment-

specific technological improvement was the fastest in the sample. The estimate for the trend

growth rate of the neutral technological change (λ∗) is 0.95% per annum. There is a large

amount of uncertainty about these trend estimates as shown in the last two columns of Table

3. The curvature parameter in the utilization function (σu) is estimated at 2.26, substantially

lower than the value obtained by Justiniano and Primiceri (2008) (7.13), but higher than

the values estimated by Altig, Christiano, Eichenbaum, and Linde (forthcoming) (2.02) and

by Smets and Wouters (2007) (1.174). The error bands show a large amount of uncertainty

around the estimate of this parameter. The investment adjustment cost parameter (S ′′) is

estimated to be 2.0, lower than those obtained in the literature. Unlike most studies in the

literature that fix the value of the capital depreciation rate a priori, we allow the depreciation

rate δ to follow a stationary stochastic process and estimate the parameter in the process.

The estimated average annum depreciation rate is 13.4%, which is remarkably close to the

standard calibration value in the real business cycle literature, but the error bands are very

wide, implying the great uncertainty about this estimate.

Among the pricing and wage setting parameters, the estimated average price markup

(µp) is about 1.0, which is consistent with the studies by Hall (1988), Basu and Fernald

(1997), and Rotemberg and Woodford (1999), who argue that the pure economic profit is

close to zero. It is also similar to the estimate obtained by Altig, Christiano, Eichenbaum,

and Linde (forthcoming), but much smaller than the value estimated by Justiniano and

Primiceri (2008). Our estimate for the average wage markup (µw) is 1.06, which is lower

than the calibrated value (Huang and Liu, 2002) and the estimated value (Justiniano and

Primiceri, 2008), but is similar to the value used by Christiano, Eichenbaum, and Evans

(2005). The uncertainty about the wage markup parameter, judged by the .90 probability

bands, is much larger than that about the price markup parameter. The estimated price

and wage stickiness parameters (ξp = 0.412 and ξw = 0.213) imply that, on average, price

contracts last for less than 2 quarters and nominal wage contracts have an even shorter

duration, which is slightly more than 1 quarter. Our estimated nominal contract duration is

consistent with the microeconomic studies such as Bils and Klenow (2004). The estimated

dynamic indexation is unimportant for price setting (γp = 0.178) but very important for

nominal wage setting (γw = 1.0). The .90 probability intervals indicate that while the

price indexation is tightly estimated, the uncertainty about the nominal wage indexation is

extremely large.

As shown in Tables 3, the estimated wage stickiness parameter lies below the lower bound

of the .90 probability interval. This phenomenon occurs because the posterior distribution

around the mode for this parameter is on the thin ridge and because there are many local

peaks that give a significant probability to regions containing the values above the estimated

wage stickiness parameter. While it is impossible to graph this phenomenon in a high

dimensional parameter space like ours, we display in Figure 1 the joint distribution of the
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wage stickiness parameter and the average wage markup parameter after integrating out all

other parameters. As one can see, the multiple local peaks give much of the probability

to the values of the wage stickiness parameters greater than the estimate at the posterior

mode. Because the two-dimensional distribution displayed in Figure 1 integrates out all

other parameters, the distribution is already skewed toward the values of the wage stickiness

parameters greater than 0.2. Nonetheless, the picture demonstrates clearly the nature of

thin ridges and multiple local peaks inherent in the posterior distribution.

The estimates of policy parameters suggest that interest-rate smoothing is important; the

estimate of ρr is 0.82 with a narrow probability interval. The policy response to deviations

of inflation from its target in the interest rule (φπ) is 1.655 with the lower probability bound

still significantly above 1.0. Policy does not respond much to detrended output and the

parameter (φy) is tightly estimated. The inflation target (π∗) is estimated at 2.28% per

annum.

The estimated results for shock processes are reported in Table 4. The AR(1) coefficients

for all shocks except the preference shock (ρa) are above 0.9, although the lower probability

bounds for some coefficients are substantially below (0.9). The preference shock is almost

i.i.d.. The MA(1) coefficients in the price markup and wage markup processes (φp and φw)

are both sizable. The estimates are 0.698 and 0.749 and the corresponding .90 probability

intervals support these high values. The government spending shock responds to the neutral

technology shock; the response coefficient (ρgz) is 0.894 with a wide probability interval.

Although the prior distributions for all the shock variances are the same, the posterior

estimates are very disperse. The depreciation shock (σd) and the wage markup shock (σw)

have the largest variances; the monetary policy shock (σr) and the two types of technology

shocks (σz and σq) have the smallest variances. The .90 probability intervals indicate that

the marginal posterior distribution of a shock variance is skewed to the right. This shape is

expected as the variance is bounded below by zero below and has no upward bound.

As shown in Table 4, the estimated shock variances in the second regime are substantially

smaller than those in the first regime. The estimated transition probabilities are summarized

by the matrix

Q̂ =

[

0.8072 0.0598

0.1928 0.9402

]

, (49)

where the elements in each column sum to one. The second regime (i.e., the regime with

low shock variances) is more persistent and, as shown in Figure 2, covers most of the period

since Greenspan became Chairman of the Federal Reserve Board. This result is even stronger

when one take into account the error bands, where the lower bound of q22 is higher than the

upper bound of q11.

Figure 3 plots the marginal posterior distribution of some key parameters. The local

peaks shown in the marginal distribution of the inflation target are the direct outcome of

the integrated effect of the non-Gaussian joint posterior distribution of all parameters that
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has thin ridges and multiple peaks. Most of the probability, however, concentrates between

2% and 4%. The marginal distribution of the response coefficient to inflation in the Taylor

indicates that there is practically no probability for indeterminate equilibria for our model.

The marginal distribution of the price-stickiness parameter implies that the price rigidity

is much smaller than what is obtained in the previous literature. The posterior mode is

near the lower tail of the marginal distribution. The joint distribution, as illustrated in

Figure 1, has a thin ridge and many local peaks. After integrating out all other parameters,

the marginal distribution of the wage-stickiness parameter shows a local peak around 0.7.

The majority of the probability, however, lies below the value 0.6. There are two reasons

why we obtain estimates that imply shorter durations of price and wage contracts than

those obtained in the literature such as Smets and Wouters (2007) and Altig, Christiano,

Eichenbaum, and Linde (forthcoming). First, our estimates suggest that the price markup

is very small, implying that the demand curve for differentiated goods is very flat. Thus,

a small increase in the relative price can lead to large declines in relative output demand.

Even if firms can re-optimize their pricing decisions very frequently, they choose not to adjust

their relative prices too much. In this sense, the small average markup and thus the large

demand elasticity become a source of strategic complementarity in firms’ pricing decisions.

Second, unlike Justiniano and Primiceri (2008) who use a minimum-distance estimator that

matches the model’s impulse responses to those in the data, we use full-information maximum

likelihood estimation. This difference is important because Justiniano and Primiceri (2008)

find that, while a shock to neutral technology leads to rapid adjustments in prices, a shock

to monetary policy leads to small and gradual price adjustments. Under their estimation

approach, matching the impulse responses following the monetary policy shock is important

so that price adjustments have to be small and gradual. Our estimation approach differs

from theirs and we find that the most important shocks are those to neutral technology,

capital depreciation, and wage markup, all of which lead to rapid adjustments in prices.

Consequently, our estimated durations of nominal contracts are shorter than those in the

literature.

The last row of Figure 3 displays the marginal posterior distributions of the investment

technology trend and the wage indexation. The distribution of the investment technology

trend puts a significant amount of probability around 4%, consistent with the data on the

relative price of investment. The distribution of the wage indexation parameter is most

interesting. While the estimate is at 1.0, there is considerable uncertainty around the wage

indexation parameter so that the estimate of 1.0 is very imprecise. This result implies that

our estimation does not necessarily support a strong wage indexation.

VII. Regime Switches in the Inflation Target

In this section we discuss the key results from the DSGE model with two regimes in the

inflation target. There are several reasons for studying the implications from this model,
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even though its fit is dominated by the DSGE model with regime changes in shock variances.

First, this type of regime-switching model is in line with the previous studies on changes in

the inflation target (Erceg and Levin, 2003; Schorfheide, 2005; Ireland, 2005). Second, the

model seems most relevant to analyzing the effect of a change in the inflation target as it

would give us the best chance to detect changes in the target regime. Third, it is informative

to determine, in light of the model’s results, to what extent changes in the inflation target

explain the rise and fall of high inflation in the 1970s.

VII.1. The baseline model. As discussed in Section VI.1, when we fit the models DSGE-

2cv and DSGE-2c2v to the data, the data attribute most of regime changes to shifts in shock

variances and little to different inflation target values. The finding, however, is different when

we fit DSGE-2c to the data.

The last columns in Tables 3 and 4 report the parameter estimates for the baseline DSGE-

2c model. Most estimated structural parameters are similar to those in the DSGE-2v model,

although the estimated Calvo price stickiness parameter is higher, and the estimated interest-

rate smoothing parameter and the inflation coefficient in the Taylor rule are lower than those

in the DSGE-2v model. The estimated shock standard deviations in the DSGE-2c model

lie mostly between the standard deviations in the two shock regimes, while the standard

deviations of the price markup shock, the wage markup shock, and the preference shock in

the DSGE-2c model are lower than those in the low-variance regime in the DSGE-2v model.

The estimates in the DSGE-2c model give two distinct inflation-target regimes, with a

high target of about 5% annualized inflation and a low target of about 2%. The question is

to what extent such regime changes in the inflation target help explain high inflation in the

1970s. To answer this question, we conduct two exercises.

First, we compute the posterior probability of the high-target regime throughout history.

As shown in the upper panel of Figure 8, the probability of the high-target regime is near

one in the first wave of great inflation in the early 1970s, while the probability is near zero

in other periods. Sargent, Williams, and Zha (2006) and Carboni and Ellison (2009) argue

that government’s misconception about the trade-off between unemployment and inflation

in the early 1970s is the most important driving force of high inflation. Although all agents

in our model, unlike Sargent, Williams, and Zha (2006) and Carboni and Ellison (2009), are

fully rational, the finding of the high-inflation target in the early 1970s corroborates their

view.

Second, we compute counterfactual paths of inflation by fixing the inflation target at either

the low-target regime or the high-target regime throughout the sample.10 In our computation,

we use the estimated DSGE-2c model to back out the posterior historical shocks and the

posterior probabilities of each inflation target regime throughout the sample. Thus, by

construction, had we weighed inflation target regimes by their posterior probabilities at each

10Since the ergodic probability of the low target regime is over 95%, the unconditional mean of the inflation

target is very close to the low inflation target.
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time t and left the posterior historical shocks in place, the simulated inflation path would

have exactly matched the actual data.11 In our counterfactual exercises where we fix the

inflation target to a particular level, the simulated inflation path would in general be different

from the actual data.

These counterfactual results show that the existence of the high-target regime and the

probability of switching to that regime are important for explaining the first wave of high

inflation in the 1970s, consistent with the findings in Erceg and Levin (2003), Schorfheide

(2005), Ireland (2005), Sargent, Williams, and Zha (2006), and Carboni and Ellison (2009).

The lower panel of Figure 8 shows that, had the low-target regime prevailed throughout

history, the peak inflation rate would have been less than 9% in 1974, much lower than the

actual inflation rate of about 12%, and inflation would have dropped to 2% in 1975 and

stayed low through 1976 (compare the solid and dashed lines in the figure) .

For the late 1970s and early 1980s, however, the counterfactual inflation path under the

permanent low-target regime tracks the actual path almost exactly. Thus, the model does

not attribute the run up of inflation in the late 1970s to a high inflation target. This result

is consistent with the findings of Sims and Zha (2006), who conduct a similar exercise but

in the context of structural BVAR models instead of DSGE models.

These results, however, by no means imply that changes in the inflation target do not

matter in some abstract sense. As shown in the lower panel of Figure 8, had the inflation

target been fixed at the high-target regime throughout history, the counterfactual path

of inflation (the dotted line) would have been substantially higher than the actual path

throughout the sample. What is critical is that the estimated duration of high inflation

target is very short. The estimated probabilities of the two inflation target regimes (the

bottom two numbers in the last column of Table 4) imply that the ergodic (unconditional)

probability of the high-target regime is much smaller than that of the low-target regime

(3.55% vs. 96.45%).

In summary, a richly-parameterized DSGE model, coupled with a large number of shock

processes like our DSGE-2c model, is likely to attribute the rise and fall of inflation more

to the shock processes than to changes in monetary policy (in our case, regime changes in

the inflation target). This point is not new; it has already been made by Sims and Zha

(2006). Our counterfactual exercises simply reinforce this point in the context of relatively

large DSGE models.

VII.2. Alternative specification. In our model with regime changes in the inflation target,

we take the standard forms for the price and wage indexation rules as well as for the interest

rate rule. Specifically, in (7) and (20), the price and the nominal wage are each indexed

11This result is true only for DSGE models with regime switches in shock variances or in constant terms

such as the inflation target. It does not hold true in general if some coefficients in an equation are switching

regime.
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partially to the steady-state inflation (i.e., the unconditional mean of inflation); and in (25),

the intercept of the interest rate rule concerns the steady state inflation.

It would be useful to consider an alternative specification in which the price and wage

indexation rules and the interest rate rule reflect regime changes in the inflation target.

The central idea is that this alternative specification would potentially allow additional

persistence to the inflation process and thus improve the fit of the model that allows for

regime changes in the inflation target (i.e., the DSGE-2c model studied in the previous

section). The alternative specifications are

Pt(j) = π
γp
t−1π

∗(st)
1−γpPt−1(j), (50)

Wt(h) = πγw
t−1π

∗(st)
1−γwλ∗

t−1,tWt−1(h), (51)

Rt = κRρr
t−1

[

rπ∗(st)

(

πt

π∗(st)

)φπ
(

Yt

λ∗

t

)φy

]1−ρr

eσrtεrt, (52)

where κ is the same as in (25). In comparison to (7), (20), and (25), the steady state inflation

rate π is now replaced by the regime-switching inflation target π∗(st).

Incorporating these changes leads to changes in the log-linearized equations of the price

Phillips curve (31), the wage Phillips curve (33), and the Taylor rule (43). These equations

are now replaced by

π̂t − γpπ̂t−1 − (1− γp)π̂
∗

t =

κp

1 + ᾱθp
(µ̂pt + m̂ct) + βEt[π̂t+1 − γpπ̂t − (1− γp)π̂

∗

t+1], (53)

ŵt − ŵt−1 + π̂t − γwπ̂t−1 − (1− γw)π̂
∗

t =
κw

1 + ηθw
(µ̂wt + m̂rst − ŵt)+

βEt[ŵt+1 − ŵt + π̂t+1 − γwπ̂t − (1− γw)π̂
∗

t+1], (54)

R̂t = ρrR̂t−1 + (1− ρr) [φππ̂t + (1− φπ)π̂
∗

t + φyŷt] + σrtεrt, (55)

where π̂∗

t denotes the deviations of the inflation target from its ergodic mean.12

The alternative specification improves the fit of all three models DSGE-2cv, DSGE-2c2v,

and DSGE-2c relative to the baseline specification (in the range of 10-15 in log value by by

both the Schwarz criterion and the marginal data density). These results indicate that the

alternative specification is not only sensible but also favored by the data.

The posterior estimates for most parameters under the alternative specification are very

similar to those under the baseline specification. When we allow regime shifts in both the

inflation target and shock variances (DSGE-2cv and DSGE-2c2v), we obtain estimates of

the two inflation targets under the alternative specification nearly identical to those under

the baseline specification. Although estimates of the transition probabilities of inflation

12See an online appendix for details of the derivation, available at http://www.tzha.net/articles#

TARGETCHANGE.
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target regimes in the DSGE-2c2v model are different from the baseline specification, inflation

dynamics are driven by regime changes in volatility, not by changes in the inflation target.

When we keep shock variances unchanged while allowing the inflation target to switch

regime (DSGE-2c), the difference between two estimated inflation targets is large enough

for changes in the transition matrix to matter in practice. The estimation results show that

q11 = 0.919 and q22 = 0.992 under the alternative dynamic indexation and the Taylor rule

(compared to q11 = 0.810 and q22 = 0.993 in the baseline model). The implied ergodic

probability for the high-target regime increases from 3.55% in the baseline model to 8.99%

in the alternative model. As in the baseline DSGE-2c model, the probability of the high-

target regime is to near one in the first wave of great inflation in the early 1970s. Unlike

the baseline model, the probability of the high-target regime also rises briefly to about 0.5

in the beginning of the 1980s and again to about 0.2 in the period from 2003 to 2006 (see

the upper panel of Figure 9).

Although the high-target regime in the alternative model appears to occur more frequently

than that in the baseline model, our counterfactual simulation suggests that the existence

of the high-target regime becomes less important for explaining the actual path of inflation

than under our baseline specification. In particular, the lower panel of Figure 9 shows that,

had the low-target regime prevailed throughout the sample periods, the inflation rate would

have been not much different from actual history (except for the small dips in the mid 1970s).

This result is somewhat surprising since the dynamic indexation of price and wage setting

rules and the interest rate feedback rule all respond to changes in the inflation target regime.

On the other hand, had the high-target regime prevailed throughout history, inflation would

have been much higher than the actual data, especially in the mid 1970s (compare the dotted

line with the solid line in the lower panel of Figure 9); moreover, the counterfactual inflation

path is much higher under this alternative specification than under the baseline specification

(compare the dotted line in the lower panel of Figures 8 and 9). Overall, our counterfactual

exercises with this alternative specification confirm the main finding that, in a rich DSGE

model like ours, the shock processes are more likely to be a main driving force of the rise

and fall in inflation than changes in the inflation target.

VIII. Economic Implications

We now discuss the economic implications of our best-fit model. We first examine, in

Section VIII.1, the role of the various shocks in driving macroeconomic fluctuations through

variance decompositions. We then present, in Section VIII.2, impulse responses of several key

aggregate variables to each of the shocks that we identify as important for macroeconomic

fluctuations. Finally, we provide some economic interpretations of the key sources of shocks

and in particular, the capital depreciation shock.

VIII.1. Variance decompositions. Tables 5 and 6 report variance decompositions in fore-

cast errors of output, investment, hours, the real wage, and inflation under the two shock
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regimes at different forecasting horizons for our best-fit model. As we have discussed in

Section VI.2, the wage markup shock and the depreciation shock have the largest variances

among all eight structural shocks. The neutral technology shock is of considerable interest

because of the debate in the recent literature on its dynamic effects on the labor market

variables (e.g., Gaĺı (1999), Christiano, Eichenbaum, and Vigfusson (2003), Uhlig (2004),

and Liu and Phaneuf (2007)).

As we can see, capital depreciation shocks, neutral technology shocks, and wage markup

shocks play an important role in driving business cycle fluctuations under both regimes.

Taken together, these three types of shocks account for 70 − 80% of the fluctuations in

output, investment, hours, and inflation under each regime for the forecast horizons beyond

eight quarters. Monetary policy shock accounts for a sizable fraction of inflation fluctuations

under the first regime but otherwise it is unimportant. The price markup shock contributes

to about 15 − 30% of the real wage fluctuations under both regimes. It is also somewhat

important for inflation fluctuations under the second regime. The remaining three shocks,

including the government spending shock, the preference shock, and the biased technology

shock are unimportant in explaining macroeconomic fluctuations.

VIII.2. Impulse responses. To gain intuition about the model’s transmission mechanisms,

we analyze impulse responses of selected variables following some of the structural shocks.

In particular, we focus on the dynamic effects of a wage markup shock, a neutral technology

shock, and a depreciation shock on output, investment, the real wage, the inflation rate,

hours, and the nominal interest rate. These shocks, as we discuss in the previous section,

are the most important driving sources of macroeconomic fluctuations. Since the impulse

responses display the same patterns for both shock regimes except the scaling effect, we

report the impulse responses only for the second regime.

Figure 4 displays the impulse responses following a one-standard-deviation shock to the

capital depreciation rate. The increase in the depreciation rate reduces the value of capital

accumulation and raises utilization and the rental price of capital; thus investment falls.

Since the expected stock of capital wealth declines, the negative wealth effect leads to a fall

in consumption as well. Consequently, aggregate output falls. The decline in output leads

to a decline in hours. The decline in hours and in consumption lowers the marginal rate

of substitution between labor and consumption, so that the households’ desired wage falls.

Thus, the equilibrium real wage declines as well. The fall in the real wage reduces the firms’

marginal cost so that inflation declines. Through the Taylor rule, the nominal interest rate

declines as well. As the .90 probability error bands show, all the responses are statistically

significant.

Figure 5 reports the impulse responses following a one-standard-deviation shock to the

investment-specific technology. The biased shock raises the efficiency of investment, invest-

ment goods today become cheaper, and current consumption becomes more expensive. This

type of shock, unlike the depreciation shock or the neutral technology shock, shifts resources
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from consumption to investment. Consequently, investment rises and consumption declines.

Hours declines initially due to the costly adjustment in investment as well as the habit for-

mation. After the second quarter, the increase in demand for investment gradually leads

to a rise in hours and the real wage. The rise in labor hours helps produce more output.

Utilization and the rental price of capital rise as well. All the responses are well estimated,

judged by the .90 probability error bands. In contrast to the responses to the depreciation

shock, the biased technology shock generates opposite movements in output and consump-

tion in the short run and consequently its impact on the macroeconomy is much smaller (by

comparing the scales in Figure 4 and those in Figure 5).

Both the capital depreciation shock and the investment-specific technology shock enter

the intertemporal capital accumulation decision. But we find that this biased technology

shock is much less important for macroeconomic fluctuations than the depreciation shock.

This finding is different from that in Justiniano, Primiceri, and Tambalotti (2011), mainly

because we use direct observations on the biased technology shock in our estimation while

they do not.

Figure 6 displays the impulse responses following a one-standard-deviation shock to the

neutral technology (i.e., the total factor productivity, or TFP). The positive neutral technol-

ogy shock raises output, consumption, investment, utilization of capital, and the real wage.

All these responses are statistically significant for the most part. The shock should lower

inflation and, through the Taylor rule, the nominal interest rate. But the error bands are

wide so that the estimates are insignificant.13

The neutral technology shock leads to a statistically significant decline in hours worked.

The decline in hours here, however, is not a direct consequence of price stickiness. Even

with much more frequent price adjustments, we find that the positive neutral technology

shock leads to a decline in hours (not reported). Instead, the investment adjustment cost

(as well as the habit formation to a less extent) plays an important role in generating the

decline in hours. If the investment adjustment cost parameter is small, we find that the

model generates an increase in hours following the neutral technology shock (not reported),

regardless of whether prices are sticky or not. Thus, our finding does not support the view

that the contractionary effect of a neutral technology shock arises from the price stickiness. It

is consistent with Francis and Ramey (2005), who argue that a real business cycle model with

habit persistence and investment adjustment cost can generate a decline in hours following

a positive neutral technology shock.

13The point estimates of inflation responses show that there is a temporary, although statistically insignif-

icant, rise in inflation following a positive TFP shock. This result comes from the endogenous responses of

the nominal interest rate. In particular, the monetary policy rule (25) implies that the nominal interest rate

responds to deviations of output from the stochastic trend λ
∗

t
. A positive TFP shock raises λ∗

t
and lowers

detrended output. Thus, in response, the nominal interest rate falls. The stimulating effect on aggregate de-

mand of the accommodative monetary policy counteracts the cost-saving effect of the TFP shock. With our

estimated parameters, the stimulating effect dominates in the short run and thus inflation rises temporarily.
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Figure 7 reports the impulse responses following a one-standard-deviation shock to the

wage markup. An increase in the wage markup raises the households’ desired real wage.

The households who can adjust their nominal wage raise their nominal wage. The increase

in the nominal wage raises the firms’ marginal cost so that inflation rises and real aggregate

demand falls. It follows that aggregate output, investment, and hours decline. Consequently,

the rental price of capital and utilization rise. Through the interest-rate rule, the rise in

inflation leads to an increase in the nominal interest rate. All these responses are statistically

significant.

VIII.3. What is a shock to capital depreciation? The variance decompositions indicate

that the TFP shock, the wage markup shock, and the depreciation shock are the most

important sources of macroeconomic fluctuations. Both the TFP shock and the wage markup

shock are familiar to many researchers, but the capital depreciation shock is new. Given its

importance in accounting for the macroeconomic fluctuations in our model, it is useful to

provide economic interpretations of this shock.

Like the TFP shock or any other shocks in this class of models, the depreciation shock is

of reduced form that captures some “deeper” sources of disturbances and possibly microe-

conomic frictions that distort intertemporal capital accumulation decisions. Greenwood,

Hercowitz, and Krusell (1997) draw a mapping between investment-specific technological

changes (ISTC) and fluctuations in economic depreciation (as opposed to physical depreci-

ation) of capital. They note that the economic depreciation rate rises when the equipment

price relative to the consumption price is expected to decline in the future. As the equip-

ment price is expected to fall, existing capital is worth less and investors have incentive to

postpone investment to future periods, leading to a contraction in current economic activity,

as does our depreciation shock.

According to this interpretation, one should expect the co-movements between ISTCs and

changes in depreciation. The top panel of Figure 10 displays the historical paths of the

depreciation shock series conditional on the model’s estimates and the actual data of the

relative price of investment.14 These two series appear to move in tandem. To give a precise

summary of the dynamic correlations between the two series, the left column of Figure 11

displays the impulse responses of ISTCs and depreciation changes following a one-standard-

deviation innovation to the ISTC. These impulse responses are estimated from a recursive

bivariate BVAR model with the Sims and Zha (1998) prior. The dynamic responses move

together at business cycle frequency.

There are two important aspects in which the transmission mechanism through capital

depreciation is not captured by changes in the relative price of investment. First, in the short

run (within the first 6 quarters), the dynamic responses of these two series move in opposite

directions. Second, more importantly, changes in the relative price of investment are mostly

14The smoothed estimates of the ISTC in the model is identical to the actual data of the relative price of

investment since we include the relative investment price as an observable variable in our estimation.
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driven by the deterministic trend. Once the time series of the ISTC enters the model as an

observable variable, there are not enough cyclical variations left to explain the changes in

the wedge of the capital Euler equation (36). Indeed, our posterior estimates show that the

standard deviation of the depreciation shock is 27 times larger than the standard deviation

of the detrended ISTC shock in the first regime and 50 times larger in the second regime

(see Table 4).

Our alternative interpretation is that a shock to the depreciation rate represents destruc-

tion of capital and therefor resembles a shock to the quality of capital in Justiniano, Primiceri,

and Tambalotti (2011) and Gertler and Kiyotaki (2010), who interpret their capital quality

shock as representing an exogenous changes in the value of capital. One possible microe-

conomic interpretation is that a large number of goods are produced using good-specific

capital. In each period, as a fraction of goods becomes obsolete randomly, the capital used

for producing those obsolete goods becomes worthless. In aggregate, the law of motion for

capital would feature a depreciation shock or similarly a capital quality shock to reflect

economic obsolescence of capital.15

This kind of capital destruction, as argued in Justiniano, Primiceri, and Tambalotti (2011)

and Gertler and Kiyotaki (2010), is closely related to the impact of a financial shock on

credit spread. The bottom panel of Figure 10 plots the historical series of depreciation shocks

computed from our estimated model along with the time series of the spread between the Baa

corporate bond yield and the 10-year treasury note yield. It is evident that the depreciation

rate comoves more closely with the credit spread than with the ISTC. Moreover, the right

column of Figure 11 reports the dynamic responses of spread and depreciation following a

one-standard-deviation innovation to the spread. Unlike the impulse responses following an

ISTC shock, a shock to the credit spread drives strong comovements between depreciation

and the credit spread. Thus, the data supports our alternative interpretation that a shock

to capital depreciation is closely related to a financial shock.

IX. Conclusion

We have studied and estimated a variety of fairly large DSGE models within a unified

framework to reexamine the sources of observed macroeconomic fluctuations in the post-

WWII U.S. economy. We do not find strong evidence of changes in the inflation target, nor

do we find support for strong nominal rigidities in prices and nominal wages. These findings

are robust across a large set of regime-switching models.

Our estimation indicates that heteroscedasticity in shock disturbances is crucial for the

model’s empirical fit and that changes in shock variances tend to take place simultaneously

rather than independently. In particular, a shock to capital depreciation, as a stand in

for economic obsolescence of capital, plays an important role as an intertemporal wedge

15A recent paper by Furlanetto and Seneca (2011) offers different perspectives on a depreciation shock

relative to other shocks that influence capital stock or the quality of capital.
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in the capital Euler equation and generates positive comovements between consumption,

investment, hours, and the real wage. The historical path of depreciation shocks move in

tandem with credit spread, suggesting that the depreciation shock in our model captures

some of the effects of financial shocks that move the credit spread. The depreciation shock,

along with the standard TFP shock and the wage markup shock, is an important driving

source of business cycle fluctuations in the U.S. economy.

Appendix A. Detailed Data Description

All data are either taken directly from the Haver Analytics Database or constructed by

Patrick Higgins at the Federal Reserve Bank of Atlanta. The construction methods developed

or used by Patrick Higgins, available on request, will be briefly described below.

The model estimation is based on quarterly time-series observations on 8 U.S. aggregate

variables during the sample period 1959:Q1–2007:Q4. The 8 variables are real per capita

GDP (Y Data
t ), real per capita consumption (CData

t ), real per capita investment (IData
t ) in

capital goods, real wage (wData
t ), the quarterly GDP-deflator inflation rate (πData

t ), per capita

hours (LData
t ), the federal funds rate (FFRData

t ), and the inverse of the relative price of

investment (QData
t ).

These series are derived from the original data in the Haver Analytics Database (with the

relevant data codes provided) or from the constructed data.

• Y Data
t = GDPH

POP25-64
.

• CData
t = (CN@USECON + CS@USECON)∗100/JGDP

POP25-64
.

• IData
t = (CD@USECON + F@USECON)∗100/JGDP

POP25-64
.

• wData
t = LXNFC@USECON/100

JGDP
.

• πData
t = JGDPt

JGDPt−1
.

• LData
t = LXNFH@USECON

POP25-64
.

• FFRData
t = FFED@USECON

400
.

• QData
t = JGDP

TornPriceInv4707CV
.

The original data, the constructed data, and their sources are described as follows.

POP25-64: civilian noninstitutional population with ages 25-64 by eliminating breaks

in population from 10-year censuses and post 2000 American Community Surveys

using “error of closure” method. This fairly simple method was used by the Census

Bureau to get a smooth population monthly population series. This smooth series

reduces the unusual influence of drastic demographic changes.

GDPH: real gross domestic product (2000 dollars). Source: BEA.

CN@USECON: nominal personal consumption expenditures: nondurable goods. Source:

BEA

CS@USECON: nominal consumption expenditures: services. Source: BEA.

CD@USECON: nominal personal consumption expenditures: durable goods. Source:

BEA.
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F@USECON: nominal private fixed investment. Source: BEA.

JGDP: gross domestic product: chain price index (2000=100). Source: BEA.

LXNFC@USECON: nonfarm business sector: compensation per hour (1992=100).

Source: BLS.

LXNFH@USECON: nonfarm business sector: hours of all persons (1992=100). Source:

BLS.

FFED@USECON: annualized federal funds effective rate. Source: FRB.

TornPriceInv4707CV: investment deflator. The Tornquist procedure is used to con-

struct this deflator as a weighted aggregate index from the four quality-adjusted price

indexes: private nonresidential structures investment, private residential investment,

private nonresidential equipment & software investment, and personal consumption

expenditures on durable goods. Each price index is a weighted one from a number

of individual price series within this categories. For each individual price series from

1947 to 1983, we use Gordon (1990)’s quality-adjusted price index. Following Cum-

mins and Violante (2002), we estimate an econometric model of Gordon’s price series

as a function of a time trend and a few NIPA indicators (including the current and

lagged values of the corresponding NIPA price series); the estimated coefficients are

then used to extrapolate the quality-adjusted price index for each individual price

series for the sample from 1984 to 2007. These constructed price series are annual.

Denton (1971)’s method is used to interpolate these annual series on a quarterly

frequency. The Tornquist procedure is then used to construct each quality-adjusted

price index from the appropriate interpolated quarterly price series.
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Table 1. Schwarz Criterion for the Set of DSGE Models

Model Baseline Restricted

DSGE-con 5859.71 5811.14

DSGE-2v 5963.03 5920.01

DSGE-2c 5853.13 5805.27

DSGE-2cv 5960.71 5907.00

DSGE-2c2v 5958.78 5913.85

DSGE-2v2v 5958.18 5912.22

DSGE-3v 5950.73 5926.91

Note: Column 1 lists the models studied: the DSGE model with all parameters that are

constant across time (DSGE-con), the DSGE model with two regimes in shock variances

(DSGE-2v), the DSGE model with two regimes in the inflation target only (DSGE-2c), the

DSGE model with two common regimes for both shock variances and the inflation target

(DSGE-2cv), and the DSGE model with two independent Markov processes, one

controlling two regimes in shock variances and the other controlling two regimes in the

inflation target (DSGE-2c2v), the DSGE model with two independent Markov processes,

one controlling two regimes in variances of two technology shocks and the other controlling

two regimes in variances of all the other shocks (DSGE-2v2v), and the DSGE model with

three regimes in shock variances (DSGE-3v). Column 2 reports the posterior densities at

the posterior mode, adjusted by Schwarz criterion. Column 3 displays the posterior

densities evaluated at the posterior modes for models with the persistence parameters in

both the price and wage markup processes set to zero.

Table 2. Comprehensive Measures of Model Fits

Model Marginal Data Density

DSGE-con 5741.24

DSGE-2v 5832.38

DSGE-2c 5739.32

DSGE-2cv 5832.60

DSGE-2c2v 5830.84

DSGE-2v2v 5826.95

DSGE-3v 5813.91
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Table 3. Prior and Posterior Distributions of Structural Parameters for the

DSGE-2v and DSGE-2c Models.

Prior Posterior Posterior

(DSGE-2v) (DSGE-2c)

Parameter Distribution 5% 95% Mode 5% 95% Mode

b Beta 0.05 0.948 0.907 0.8898 0.9533 0.877

α1 Beta 0.15 0.35 0.163 0.1701 0.2162 0.153

α2 Beta 0.35 0.75 0.835 0.7348 0.8101 0.837

η Gamma 0.2 10.0 2.888 2.7151 8.3848 2.235

100(λq − 1) Gamma 0.1 1.5 1.000 0.7663 1.5001 1.000

100(λ∗ − 1) Gamma 0.1 1.5 0.237 0.0876 0.4414 0.180

100 (β−1 − 1) Beta 0.2 4.0 0.175 0.0518 0.3915 0.109

σu Gamma 0.5 3.0 2.263 1.3343 5.5196 2.266

S ′′ Gamma 0.5 5.0 2.000 1.2086 3.6145 1.525

µp − 1 Gamma 0.01 0.50 0.000 0.0001 0.0032 0.002

µw − 1 Gamma 0.01 0.50 0.060 0.0166 0.4151 0.069

4δ Beta 0.05 0.2 0.134 0.0956 0.5928 0.107

ξp Beta 0.1 0.75 0.412 0.2312 0.6202 0.545

γp Beta 0.05 0.95 0.178 0.0261 0.3390 0.118

ξw Beta 0.1 0.75 0.213 0.2482 0.6779 0.185

γw Beta 0.05 0.95 1.000 0.2275 0.9724 1.000

ρr Beta 0.05 0.948 0.816 0.7923 0.8726 0.730

φπ Gamma 0.5 5.0 1.655 1.4119 2.2899 1.186

φy Gamma 0.05 3.0 0.043 0.0241 0.1168 0.006

400 log π∗(1) Gamma 1.0 8.0 2.283 1.2228 6.1118 4.981

400 log π∗(2) Gamma 1.0 8.0 1.982

Notes: “5%” and “95%” demarcate the bounds of the 90% probability interval.

“DSGE-2v” denotes the model with two regimes in shock variances and “DSGE-2c”

denotes the model with two regimes in the inflation target.
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Table 4. Prior and Posterior Distributions of Shock Process Parameters for

the DSGE-2v and DSGE-2c Models

Prior Posterior Posterior

(DSGE-2v) (DSGE-2c)

Parameter Distribution 5% 95% Mode 5% 95% Mode

ρp Beta 0.05 0.948 0.949 0.8524 0.9642 0.998

φp Beta 0.05 0.948 0.698 0.5009 0.8439 0.676

ρw Beta 0.05 0.948 0.999 0.8047 0.9973 0.998

φw Beta 0.05 0.948 0.749 0.6597 0.9307 0.645

ρgz Gamma 0.2 3.0 0.894 0.4555 1.3748 1.446

ρa Beta 0.05 0.948 0.107 0.0471 0.4010 0.061

ρq Beta 0.05 0.95 0.994 0.9875 0.9973 0.994

ρz Beta 0.05 0.95 0.992 0.9832 0.9984 0.997

ρd Beta 0.05 0.948 0.934 0.9172 0.9820 0.899

σr(1) Inverse Gamma 0.0005 1.0 0.004 0.0038 0.0066 0.003

σr(2) Inverse Gamma 0.0005 1.0 0.001 0.0012 0.0016

σp(1) Inverse Gamma 0.0005 1.0 0.039 0.0312 0.1426 0.024

σp(2) Inverse Gamma 0.0005 1.0 0.028 0.0211 0.0819

σw(1) Inverse Gamma 0.0005 1.0 0.255 0.2708 2.9007 0.106

σw(2) Inverse Gamma 0.0005 1.0 0.144 0.1452 1.6253

σg(1) Inverse Gamma 0.0005 1.0 0.041 0.0332 0.0566 0.026

σg(2) Inverse Gamma 0.0005 1.0 0.021 0.0192 0.0247

σz(1) Inverse Gamma 0.0005 1.0 0.010 0.0099 0.0167 0.008

σz(2) Inverse Gamma 0.0005 1.0 0.006 0.0064 0.0083

σa(1) Inverse Gamma 0.0005 1.0 0.043 0.0375 0.1371 0.028

σa(2) Inverse Gamma 0.0005 1.0 0.037 0.0337 0.0819

σq(1) Inverse Gamma 0.0005 1.0 0.007 0.0064 0.0109 0.004

σq(2) Inverse Gamma 0.0005 1.0 0.002 0.0026 0.0034

σd(1) Inverse Gamma 0.0005 1.0 0.193 0.1442 1.0925 0.139

σd(2) Inverse Gamma 0.0005 1.0 0.099 0.0702 0.4989

q11 Dirichlet 0.589 0.991 0.807 0.6045 0.8749 0.810

q22 Dirichlet 0.589 0.991 0.940 0.9063 0.9769 0.993

Notes: “5%” and “95%” demarcate the bounds of the 90% probability interval.

“DSGE-2v” denotes the model with two regimes in shock variances and “DSGE-2c”

denotes the model with two regimes in the inflation target.
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Table 5. Forecast Error Variance Decomposition: Regime I

Horizon MP PM WM GS Ntech Pref Btech Dep

Output

4Q 5.1443 4.1486 21.7621 12.8076 21.7050 1.4694 0.2106 32.7525

8Q 2.6618 4.1472 36.6626 6.3157 23.4311 0.5821 0.3289 25.8707

16Q 1.2227 2.9278 49.3857 3.4905 25.7249 0.2658 0.3942 16.5885

20Q 0.9756 2.5166 52.4044 2.9881 26.1211 0.2121 0.4119 14.3702

Investment

4Q 8.2082 5.7979 14.4682 0.7438 4.7909 0.5182 1.5667 63.9061

8Q 4.6292 6.2905 22.8817 1.1375 7.1533 0.7034 2.2140 54.9904

16Q 3.2021 5.9545 30.5410 1.2310 10.2411 0.6839 3.6330 44.5134

20Q 3.0318 5.7789 32.0371 1.1764 11.1034 0.6478 4.2787 41.9460

Hours

4Q 6.2409 4.6560 33.5268 18.7046 3.9659 2.0046 0.0815 30.8198

8Q 3.4031 4.8188 58.8519 10.9127 1.8040 0.9368 0.1388 19.1339

16Q 1.7212 3.0812 76.6957 6.8522 0.9926 0.4698 0.1114 10.0761

20Q 1.3929 2.5430 79.8568 6.0511 0.8162 0.3841 0.0938 8.8619

Real wage

4Q 6.2726 14.9794 24.5772 0.2213 34.1127 1.1717 0.2982 18.3668

8Q 5.6839 19.8200 12.8581 0.1161 31.7275 0.5643 0.2978 28.9321

16Q 3.3235 20.6873 6.9996 0.1603 36.8344 0.3290 0.3967 31.2691

20Q 2.8272 19.7771 5.9603 0.1726 39.2705 0.2857 0.4580 31.2486

Inflation

4Q 17.1586 11.2160 34.3253 1.1835 0.1755 1.1923 0.5994 34.1493

8Q 17.1334 9.3782 36.9222 1.1124 0.1509 1.0689 0.7772 33.4568

16Q 14.3407 7.9953 40.9412 0.9402 0.1589 0.9094 0.7557 33.9585

20Q 12.8011 7.2902 42.2714 0.8484 0.2053 0.8251 0.6802 35.0783

Note: Columns 2− 9 correspond to the shocks: the monetary policy shock (MP), the price

markup shock (PM), the wage markup shock (WM), the government spending shock (GS),

the neutral technology shock (Ntech), the preference shock (Pref), the biased technology

shock (Btech), and the depreciation shock (Dep).
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Table 6. Forecast Error Variance Decomposition: Regime II

Horizon MP PM WM GS Ntech Pref Btech Dep

Output

4Q 1.4623 6.8572 22.2957 10.9572 27.1732 3.5101 0.0921 27.6522

8Q 0.7325 6.6368 36.3663 5.2312 28.4007 1.3462 0.1392 21.1470

16Q 0.3285 4.5746 47.8282 2.8228 30.4437 0.6002 0.1629 13.2390

20Q 0.2611 3.9167 50.5532 2.4070 30.7917 0.4770 0.1696 11.4238

Investment

4Q 2.6142 10.7376 16.6082 0.7130 6.7202 1.3870 0.7675 60.4524

8Q 1.3975 11.0425 24.8966 1.0335 9.5109 1.7845 1.0280 49.3065

16Q 0.9411 10.1760 32.3509 1.0888 13.2559 1.6891 1.6423 38.8559

20Q 0.8887 9.8499 33.8462 1.0379 14.3342 1.5957 1.9291 36.5185

Hours

4Q 1.8550 8.0476 35.9182 16.7333 5.1919 5.0074 0.0373 27.2093

8Q 0.9744 8.0232 60.7354 9.4043 2.2750 2.2543 0.0611 16.2724

16Q 0.4847 5.0454 77.8436 5.8075 1.2310 1.1118 0.0482 8.4277

20Q 0.3918 4.1596 80.9619 5.1229 1.0112 0.9081 0.0406 7.4039

Real wage

4Q 1.5771 21.9006 22.2722 0.1675 37.7754 2.4758 0.1153 13.7161

8Q 1.4263 28.9214 11.6296 0.0877 35.0659 1.1900 0.1150 21.5641

16Q 0.8150 29.4979 6.1863 0.1183 39.7808 0.6781 0.1496 22.7740

20Q 0.6917 28.1379 5.2561 0.1271 42.3184 0.5875 0.1724 22.7089

Inflation

4Q 5.3155 20.2044 38.3260 1.1035 0.2395 3.1041 0.2856 31.4214

8Q 5.3827 17.1324 41.8078 1.0518 0.2089 2.8220 0.3755 31.2189

16Q 4.4593 14.4569 45.8850 0.8799 0.2176 2.3764 0.3614 31.3634

20Q 3.9610 13.1172 47.1437 0.7901 0.2798 2.1456 0.3237 32.2388
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Figure 1. The histogram plot for the joint posterior distribution of the wage

stickiness parameter and the average wage markup parameter for the model

DSGE-2v.
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Figure 2. Posterior probabilities of the less volatile regime (the second

regime) for the DSGE-2v model.
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DSGE-2v model.
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Figure 4. Impulse responses to a depreciation shock in the second regime for

the DSGE-2v model. The shaded area represents .90 probability point-wise

error bands and the thick line represents the median estimate.
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Figure 5. Impulse responses to an investment-specific technology shock in

the second regime for the DSGE-2v model. The shaded area represents .90

probability point-wise error bands and the thick line represents the median

estimate.
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Figure 6. Impulse responses to a neutral technology shock in the second

regime for the DSGE-2v model. The shaded area represents .90 probability

point-wise error bands and the thick line represents the median estimate.
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Figure 7. Impulse responses to a wage markup shock in the second regime

for the DSGE-2v model. The shaded area represents .90 probability point-wise

error bands and the thick line represents the median estimate.
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Figure 8. Top panel: posterior probabilities of the high inflation target

regime for the DSGE-2c model (on the left scale) and actual inflation data

(on the right scale). Bottom panel: counterfactual paths of inflation simu-

lated from the DSGE-2c model, if the inflation target had been fixed at the

low target regime (the dashed line) and at the high target regime (the dotted

line) throughout the sample.
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Figure 9. Top panel: posterior probabilities of the high inflation target

regime for the DSGE-2c model with the alternative specification (on the left

scale) and actual inflation data (on the right scale). Bottom panel: counterfac-

tual paths of inflation simulated from the DSGE-2c model with the alternative

specification, if the inflation target had been fixed at the low target regime (the

dashed line) and at the high target regime (the dotted line) throughout the

sample.



SOURCES OF MACROECONOMIC FLUCTUATIONS 50

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
−1

−0.5

0

0.5

1

D
ep

re
ci

at
io

n

 

 

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
−0.1

−0.05

0

0.05

0.1

In
ve

rs
e 

in
ve

st
m

en
t p

ric
e

Depreciation
Inverse investment price

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
−1

−0.5

0

0.5

1

D
ep

re
ci

at
io

n

 

 

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.01

0.02

0.03

0.04

S
pr

ea
d

Depreciation
Spread

Figure 10. Historical paths of depreciation shocks, deviations of the ISTC

from its deterministic trend, and the spread between the Baa corporate and

10-year treasury yields. The shaded bars indicate the NBER recession dates.
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Figure 11. Impulse responses of the depreciation rate, the detrended ISTC,

and the spread between the Baa corporate and 10-year treasury yields. The

first column represents the dynamic responses of the ISTC and the deprecia-

tion rate following an innovation to the ISTC. The second column represents

the dynamic responses of the spread and the depreciation rate following an in-

novation to the spread. The shaded area represents .90 probability point-wise

error bands and the thick line represents the median estimate.
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