LIQUIDITY PREMIA, PRICE-RENT DYNAMICS, AND BUSINESS CYCLES

JIANJUN MIAO, PENGFEI WANG, AND TAO ZHA

ABSTRACT. In the U.S. economy over the past twenty five years, house prices exhibit fluctuations considerably larger than house rents. These price-rent dynamics tend to move together with business cycles and have a predictive power for house returns over the long horizon. We develop and estimate a dynamic general equilibrium model to account for these facts and offer structural interpretations. The model’s transmission mechanism transforms a very small persistent shock to the stochastic discount factor into a large price-rent ratio fluctuation. The same shock generates the comovement between the price-rent ratio and output. Moreover, the rent-price ratio predicts the house return over the long horizon.

Date: December 19, 2014.

Key words and phrases. Asset pricing, long-horizon predictability, financial frictions, DSGE estimation, endogenous TFP, liquidity constraint, liquidity premium.

JEL classification: E22, E32, E44.

We thank Mark Bils, Larry Christiano, Marty Eichenbaum, Jordi Galí, Lars Hansen, Simon Gilchrist, Pat Higgins, Lee Ohanian, Monika Piazzesi, Sergio Rebelo, Richard Rogerson, Martin Schneider, and seminar participants at Vanderbilt University, the University of Rochester, the Wharton School of the University of Pennsylvania, the University of North Carolina, the 2014 NBER Summer Institute, the 2014 AFR Summer Institute of Economics and Finance, and the University of Toronto for helpful discussions. This research is supported in part by the National Science Foundation Grant SES 1127665. The views expressed herein are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of Atlanta or the Federal Reserve System or the National Bureau of Economic Research.
The rise and fall of house prices in the past decades have generated a great deal of research on asset-pricing implications of real estate prices as well as their linkage to the macroeconomy. We develop and estimate a tractable dynamic stochastic general equilibrium (DSGE) model to account for the three key facts:

1. House prices fluctuate much more than house rents and output do. Over the past twenty-five years, while the volatility (measured by the standard deviation of quarterly changes) is 0.736% for output and 0.278% for house rent, the volatility of house price is 2.759%.

2. The rent-price ratio predicts the long-horizon house return. Simple OLS regressions of house returns at different horizons on the log rent-price ratio show that the slope coefficients are significantly positive and increase with the horizon and that the fit measure, R^2, also increases with the horizon.

3. The price-rent ratio series tends to move with output (a sum of consumption and investment) as illustrated in Figure 1. The correlation between detrended output and the price-rent ratio (in log value) is as high as 0.528.

How to account for all these salient facts in one single structural framework has been a central but challenging issue in finance and macroeconomics. In particular, the existing DSGE models with production have difficulty in generating more volatile house price than house rent while maintaining the rent-price predictability of house returns over the long horizon. As in much of the asset-pricing literature, these DSGE models imply that the house price is the discounted present value of future rents and thus both price and rent move in comparable magnitude (Iacoviello, 2005; Iacoviello and Neri, 2010; Liu, Wang, and Zha, 2013).

Our structural model links the housing market and the production economy and identifies a transmission mechanism that explains the preceding facts. The challenge is to make such a model simple enough to gain economic intuition but at the same time sophisticated enough to fit to the U.S. time-series data. To balance these two objectives, we begin with a simple and revealing model without capital in which there is a continuum of heterogeneous firms with idiosyncratic productivity shocks. Firms trade housing units; their assets are in the form of real estate. A productive firm borrows from households to finance its working capital in the form of trade credit with a promise to repay the loan after production takes place. Because the firm may choose to renege on its payment promise, an incentive compatibility constraint is imposed to resolve the limited enforcement problem. The optimal contract results in a liquidity constraint on how much of working capital the firm is able to finance. We show that this endogenously-derived constraint is directly influenced by the difference
between the house price and the discounted present value of house rents. We call this gap the “liquidity premium.”

We view our endogenously-derived borrowing constraint as a valuable addition to the literature that focuses on collateral constraints. As pointed out by Petersen and Rajan (1997), trade credit is the single most important source of short-term external finance for firms in the U.S. Cunat (2007) finds that trade credit accounts for 50% of short term debt and 35% of total debt for the U.S. firms and that trade credit is typically an unsecured debt. The enforcement largely relies on some informal firm-specific relationship or reputation with no collateral. Defaulting would result in termination of the future credit supply. These features are well captured by our endogenously-derived borrowing constraint.

A rise in the liquidity premium relaxes the firm’s liquidity constraint and thus facilitates the firm’s production. The liquidity constraint is not always binding. A novel feature of our model is: whether a particular firm’s liquidity constraint binds depends on both the nature of the shock and the realization of the firm’s individual productivity. A shock that raises the liquidity premium simultaneously raises the threshold of the productivity level above which firms choose to produce until their liquidity constraint binds. A rise in such a cutoff level, in turn, weeds out unproductive firms and induces highly productive firms to operate. In aggregate it raises the total factor productivity (TFP). In Section IV we derive a closed-form log-linearized approximate solution to this model and illustrate that such a dynamic interaction between the liquidity premium and endogenous TFP holds the key to generating large fluctuations of the price-rent ratio, the rent-price predictability of house returns, and the comovement between the price-rent ratio and output.

Fitting such a general equilibrium model to both house price and house rent, as well as the key macroeconomic variables, is a challenging task. To this end, we extend the simple model to a dynamic general equilibrium model with investment. The fit is remarkably competitive with the Minnesota-prior BVAR model. We find that traditional business-cycle shocks, such as shocks to technology, housing demand, and labor supply, cannot explain price-rent fluctuations in magnitude comparable to the observed time series. A shock to the stochastic discount factor (SDF), by contrast, accounts for all the three observed facts delineated at the beginning of this section.

Our estimated SDF shock itself exhibits very small volatility (0.016%) but this small and persistent shock contributes to not only most of the large price-rent fluctuation but also 58% of the output volatility. Since the SDF shock directly influences the stochastic discount factor, we compute how much the SDF fluctuation contributes to the price-rent volatility. We decompose the price-rent volatility into two components, one attributed to the SDF fluctuation and the other attributed to financial frictions. We find that a third of the price-rent volatility is attributed to the SDF fluctuation while the rest is due to the
financial friction introduced to our model. The model’s transmission mechanism amplifies this small persistent shock into the large price-rent fluctuation. We show that the rent-price data generated by a sequence of SDF shocks can predict house returns over the long horizon, matching what is observed in the U.S. economy.

The paper is organized as follows. In Section II we reviews the related literature. In Section III we construct a simple theoretical framework that can be easily understood. This framework lays a foundation for our medium-scale empirical model. In Section IV we develop key intuition for the link between price-rent dynamics and aggregate fluctuations. In Section V we extends the simple model to a medium-scale dynamic general equilibrium model that is confronted with the U.S. time series. In Section VI we discuss the empirical results from the estimated model. In Section VII we discuss the transmission mechanism that is present in the medium-scale model but lacking in the simple model. In Section VIII we discuss how the model’s results match the volatility and predictability observed in the data. Section IX concludes the paper.

II. Related Literature

Our paper is related to three strands of literature. The first strand studies the house return predictability and the rise and fall of house prices relative to house rents (Campbell, Davis, Gallin, and Martin, 2009; Piazzesi and Schneider, 2009; Caplin and Leahy, 2011; Burnside, Eichenbaum, and Rebelo, 2011; Pintus and Wen, 2013; Head, Lloyd-Ellis, and Sun, 2014). This literature focuses on facts 1 and 2 but does not provide a structural model that links the housing market and the macroeconomy (fact 3).

The second strand of literature studies DSGE models of the housing market. In addition to the papers cited earlier, other related papers include Kiyotaki, Michaelides, and Nikolov (2011) and Justiniano, Primiceri, and Tambalotti (2014). This literature typically focuses on fact 3 but does not study the house return predictability and the volatility of the price-rent ratio (facts 1 and 2). One exception is the paper by Favilukis, Ludvigson, and Nieuwerburgh (2013), who build a two-sector overlapping-generations model of housing and non-housing production where heterogeneous households face limited opportunities to insure against aggregate and idiosyncratic risks. Their empirical strategy is based on calibration and complicated numerical methods to approximate wealth distributions. Our model is tractably formulated to be estimated against the data by Bayesian methods.

The third strand of literature analyzes the impact of financial frictions on the measured TFP (Jermann and Quadrini, 2007; Miao and Wang, 2012; Gilchrist, Sim, and Zakrajšek, 2013; Liu and Wang, 2014; Midrigan and Xu, 2014). This strand of literature is too large for us to list every relevant paper. Restuccia and Rogerson (2013) have an excellent review

1See Ghysels, Plazzi, Torous, and Valkanov (2012) for a survey of this literature.
of the literature. A general view is that financial frictions can cause resource misallocation and therefore TFP losses. Many important papers in this literature focus on a steady state analysis and on the implications for growth and development.

One exception is the paper by Buera and Moll (2013), who study the role of shocks to collateral constraints (or credit crunch) in business cycles (Jermann and Quadrini (2012) also study the impact of this shock on business cycles). They show that a credit crunch results in a decrease of the cutoff productivity level above which firms are active. The implication of this result is that there is an entry of unproductive firms, causing a drop in TFP in recessions. This result is consistent with the evidence provided by Kehrig (2011), who documents that the dispersion of productivity in U.S. durable manufacturing firms is greater in recessions than in booms, implying a relatively higher share of unproductive firms in recessions.

Our model places a different emphasis on the role of firm heterogeneity and endogenous TFP dynamics. We focus on understanding how the endogenous TFP mechanism, in combination with optimal contracts on working capital, helps transform a small persistent SDF shock into a large output fluctuation and even a larger price-rent ratio fluctuation, how the price-rent ratio comoves with output over the business cycle, and how the price-rent dynamics help predict house returns in the future.

Our modeling of the SDF shock follows Smets and Wouters (2007), Primiceri, Schaumburg, and Tambalotti (2006), and Albuquerque, Eichenbaum, and Rebelo (2014) to capture demand shifts. Albuquerque, Eichenbaum, and Rebelo (2014) argue that the SDF shock is important to explain the equity premium puzzle and the correlation puzzle in an endowment economy. This shock is a parsimonious way of modeling the variation in discount rates stressed by Hansen and Jagannathan (1991), Campbell and Ammer (1993) and Cochrane (2011) and can be interpreted also as a sentiment shock as in Barberis, Shleifer, and Vishny (1998) and Dumas, Kurshev, and Uppal (2009).

III. A Simple Model Without Capital

In this section we present a simple model without capital to obtain a closed-form solution up to first-order approximation. The closed-form results, discussed in Section IV, enable us to illustrate the transmission mechanism that accounts for the three key facts discussed in the Introduction. Proofs of all the propositions in this section are provided in Appendix A.

III.1. The Economy. The economy is populated by the representative household and a continuum of firms.

2See other papers in the special issue of the Review of Economic Dynamics, volume 16, issue 1, 2013.
Households. The representative household maximizes the lifetime utility function

\[E_0 \sum_{t=0}^{\infty} \beta^t \Theta_t \left(\log C_t + \xi_t (h_{rt} + h_{ot}) - \frac{N_t^{1+\nu}}{1+\nu} \right), \]

where \(C_t \) represents consumption, \(N_t \) represents labor supply, \(h_{rt} \) represents rented housing units, and \(h_{ot} \) represents purchased housing units. The parameters \(\beta \in (0,1) \) and \(1/\nu > 0 \) represent the subjective discount factor and the Frisch elasticity of labor supply, respectively.

We introduce an intertemporal preference shock, \(\Theta_t \), that directly influences the stochastic discount factor. We call \(\theta_t = \Theta_t/\Theta_{t-1} \) a shock to the SDF or an SDF shock. We follow Iacoviello and Neri (2010) and Liu, Wang, and Zha (2013) and introduce an intratemporal shock, \(\xi_t \), that influences the demand for housing. Both \(\theta_t \) and \(\xi_t \) are assumed to follow an AR(1) process with

\[\log \theta_{t+1} = \rho \log \theta_t + \sigma_\theta \varepsilon_{\theta t+1}, \]

(1)

where \(\sigma_\theta > 0, |\rho| < 1, \) and \(\varepsilon_{\theta t+1} \) is an i.i.d. normal random variable, and

\[\log \xi_{t+1} = (1 - \rho_\xi) \log \xi_t + \rho_\xi \log \xi_t + \sigma_\xi \varepsilon_{\xi t+1}, \]

(2)

where \(\sigma_\xi > 0, |\rho_\xi| < 1, \) and \(\varepsilon_{\xi t+1} \) is an i.i.d. normal random variable.

The household's intertemporal budget constraint is given by

\[C_t + r_{ht} h_{rt} + p_t (h_{ot+1} - h_{ot}) = w_t N_t + D_t, \quad t \geq 0, \]

where \(r_{ht} \) represents the house rent, \(p_t \) is the house price, \(w_t \) is the wage rate, and \(D_t \) is the dividend income. We assume that the household does not initially own any housing unit (i.e., \(h_{ot} = 0 \) when \(t = 0 \)) and faces the short-sales constraint \(h_{ot+1} \geq 0 \) for all \(t \). Assume that houses do not depreciate.

We obtain the following first-order conditions:

\[r_{ht} = \frac{\Theta_t \xi_t}{\Lambda_t}, \]

(3)

\[\frac{\Theta_t \xi_t}{\Lambda_t} = w_t, \]

(4)

and

\[p_t = \beta E_t \frac{\Lambda_{t+1}}{\Lambda_t} (p_{t+1} + r_{ht+1}) + \frac{\pi_t}{\Lambda_t}, \]

(5)

where

\[\Lambda_t = \frac{\Theta_t}{C_t} \]

(6)

is the marginal utility of consumption, and \(\pi_t \geq 0 \) is the Lagrange multiplier associated with the short-sales constraint \(h_{ot+1} \geq 0 \) with the complementary slackness condition \(\pi_t h_{ot+1} = 0 \).

Equation (3) indicates that the house rent is equal to the marginal rate of substitution between housing services and consumption. Equation (4) states that the wage rate is equal
to the marginal rate of substitution between leisure and consumption. Equation (5) is the asset-pricing equation for housing.

Firms. Each firm \(i \in [0,1] \) owns a constant-returns-to-scale technology that produces output \(y_i^t \) using labor input \(n_i^t \) according to
\[
y_i^t = a_i^t A_t n_i^t,
\]
where \(a_i^t \) represents an idiosyncratic productivity shock drawn independently and identically from a fixed distribution with pdf \(f \) and cdf \(F \) on \((0,\infty)\), and \(A_t \) represents an aggregate technology shock that follows the AR(1) process
\[
\log A_{t+1} = \rho_a \ln A_t + \sigma_a \varepsilon_{at+1},
\]
where \(\sigma_a > 0, |\rho_a| < 1 \), and \(\varepsilon_{at+1} \) is an i.i.d. normal random variable. Firm \(i \) maximizes its expected discounted present value of dividends
\[
\max E_0 \sum_{t=0}^{\infty} \frac{\beta^t A_t}{A_0} d_i^t,
\]
where \(d_i^t \) denotes dividends and \(\beta^t A_t / A_0 \) is the household’s stochastic discount factor.

Firm \(i \) hires labor, trades and leases housing units. In each period \(t \), prior to the sales of output and housing units, firm \(i \) must borrow to finance working capital of wage bills. Households extend trade credit to the firm in the beginning of period \(t \) and allows it to pay wage bills at the end of the period using revenues from sales of output and housing units. The firm’s flow-of-funds constraint is given by
\[
d_i^t + p_t(h_{i+1}^t - h_i^t) = a_i^t A_t n_i^t - w_t n_i^t + r h_i^t, \quad t \geq 0, \text{ with } h_0^t \text{ given.}
\]
Firms are not allowed to short-sell houses so that \(h_{i+1}^t \geq 0 \) for all \(t \).

We follow Kehoe and Levine (1993), Alvarez and Jermann (2000), Albuquerque and Hopenhayn (2004), and Krueger and Uhlig (2006) and assume that contract enforcement is imperfect. The firm has limited commitment and may choose not to pay wage bills. In such a default state, the firm would retain its production revenues \(a_i^t A_t n_i^t \) as well as its house holdings \(h_i^t \). But the firm would be denied access to financial markets in the future. In particular, it would be barred from selling any asset holdings for profit and from obtaining loans for working capital.\(^3\)

We assume that firms cannot use housing units as collateral. This assumption is reasonable for our full model studied in Section V in which there is a continuum of creditors, who are input suppliers as intermediate goods producers. Upon default, it is difficult for a large number of creditors to split a single firm’s collateral value. Our limited-commitment contract

\(^3\)To focus on the role of working capital and make our economic mechanism transparent, we abstract from intertemporal loan markets. An introduction of such intertemporal elements would compromise the economic intuition and complicate the model a great deal without changing the key results in this paper.
is consistent with the use of trade credit for production in the U.S. economy (Petersen and Rajan, 1997; Cunat, 2007). Unlike bank debt, trade credit is enforced by relational contracts based on reputation.

In the default state, since the firm would have no access to working capital, it would be unable to produce. In short, the firm would be in autarky. Let $V_{t+1}^a(h^i_t)$ denote the continuation value for firm i that chooses to default in period t with house holdings h^i_t. Let $V_i(h^i_t, a^i_t)$ denote firm i’s value function. The firm has no incentive to default on the trade credit if and only if the following incentive compatibility constraint holds:

$$V_t(h^i_t, a^i_t) \geq a^i_t A_t n^i_t + r h^i_t + \beta E_t \frac{\Lambda_{t+1}}{\Lambda_t} V_{t+1}^a(h^i_t), \quad (9)$$

where the left-hand side of the inequality is the no-default value and the right-hand side gives the default value. Since $V_{t+1}^a(h^i_t)$ is equal to the sum of the rental value in period $t + 1$ and the expected discounted present value of future rents, we have

$$\beta E_t \frac{\Lambda_{t+1}}{\Lambda_t} V_{t+1}^a(h^i_t) = p^a_t h^i_t, \quad (10)$$

where p^a_t denotes the expected discounted present value of future rents (per housing unit)

$$p^a_t \equiv E_t \sum_{\tau=1}^{\infty} \beta^\tau \frac{\Lambda_{t+\tau}}{\Lambda_t} r_{ht+\tau} = \beta E_t \frac{\Lambda_{t+1}}{\Lambda_t} (p^a_{t+1} + r_{ht+1}). \quad (11)$$

Firm i’s problem is to solve the Bellman equation

$$V_t(h^i_t, a^i_t) = \max_{n^i_t, h^i_{t+1} \geq 0} d^i_t + \beta E_t \frac{\Lambda_{t+1}}{\Lambda_t} V_{t+1}(h^i_{t+1}, a^i_{t+1}), \quad (12)$$

subject to (8) and (9).

III.2. Liquidity Constraint and Asset Pricing

One significant feature of our model is that the incentive constraint (9) gives rise to an endogenous liquidity constraint that depends on the liquidity premium for housing, as stated as follows.

Proposition 1. The value function takes the form $V_t(h^i_t, a^i_t) = v_t(a^i_t) h^i_t$, where $v_t(a^i_t)$ satisfies

$$p_t = \beta E_t \frac{\Lambda_{t+1}}{\Lambda_t} v_{t+1}(a^i_{t+1}). \quad (13)$$

The incentive compatibility constraint (9) is equivalent to

$$w_t n^i_t \leq (p_t - p^a_t) h^i_t \equiv b_t h^i_t, \quad (14)$$

where we define the liquidity premium b_t as

$$b_t \equiv p_t - p^a_t \geq 0.$$

4The value function depends on aggregate state variables as well. We omit these state variables to keep notation simple.
The linear form of the value function in Proposition 1 follows directly from the constant-returns-to-scale technology. Equation (13) is an equilibrium restriction on the house price. If $p_t > \beta E_t \left[v_{t+1}(a_{t+1}^i) \Lambda_{t+1}/\Lambda_t \right]$, firm i would prefer to sell all housing units, $h_{t+1}^i = 0$. All other firms would not hold housing units because the preceding inequality holds for any i as a_i is i.i.d. This would violate the market-clearing condition for the housing market. If $p_t < \beta E_t \left[v_{t+1}(a_{t+1}^i) \Lambda_{t+1}/\Lambda_t \right]$, all firms would prefer to own housing as much as possible, which again violates the market-clearing condition.

The pricing restriction (13) is essential to achieving the interpretive form (14) of the liquidity constraint. Using the Bellman equation (12), we can rewrite the incentive constraint (9) as

$$d_t^i + \beta E_t \frac{\Lambda_{t+1}}{\Lambda_t} V_{t+1}(h_{t+1}^i, a_{t+1}^i) \geq a_t^i A_t n_t^i + r_h h_t^i + \beta E_t \frac{\Lambda_{t+1}}{\Lambda_t} V_{t+1}(h_{t+1}^i).$$

Given the value function and equations (8), (10), and (13), we can rewrite this constraint as

$$a_t^i A_t n_t^i - \omega_t n_t^i + r_h h_t^i + p_t^i h_t^i \geq a_t^i A_t n_t^i + (r_h + p_t^i) h_t^i.$$

Simplifying the proceeding inequality yields the constraint (14). The left-hand side of (14) is the cost of working capital (wage bills); the right-hand side is the liquidity value. Housing provides liquidity for firms to finance working capital and thus commands a liquidity premium.

The key idea of this paper is that the liquidity premium provided by housing facilitates production. The higher the premium, the more relaxed the liquidity constraint. A credit expansion allows firms to finance more working capital, hire more workers, and produce higher output. Relevant questions are: what factors influence the liquidity premium? And how does such a premium influences the price-rent ratio over the business cycle? As will be discussed in Section IV, the shock process governing θ_t is not only a principal force that drives the large fluctuation of liquidity premium but also a main source for the predictive power of the rent-price ratio on future house returns.

Proposition 1 enables us to solve the firm’s decision problem and obtain asset-pricing equations for determining house prices.

Proposition 2. Firm i’s optimal labor choice is given by

$$n_t^i = \begin{cases} \frac{bh_t^i}{\omega_t} & \text{if } a_t^i \geq a_t^* \\ 0 & \text{otherwise} \end{cases},$$

5The constraint (14) can be interpreted as an endogenous credit constraint of the Kiyotaki and Moore (1997) type, such that $\omega_t n_t^i \leq \lambda_t p_t h_t^i$ where $\lambda_t = b_t/p_t$ is endogenously determined.

6He, Wright, and Zhu (2013) and Miao, Wang, and Zhou (2014) study the role of the liquidity premium in the house price in theoretical models with multiple equilibria. This is not the focus of our paper.
where \(a_t^* \equiv w_t/A_t \). The house price is determined by the two asset-pricing equations

\[
p_t = \beta E_{t} \left(\frac{\Lambda_{t+1}}{\Lambda_t} \right) \left[r_{ht+1} + p_{t+1} + b_{t+1} \int_{a_{t+1}^*}^{\infty} \frac{a - a_{t+1}^*}{a_{t+1}^*} f(a) da \right],
\]

and

\[
b_t = \beta E_{t} b_{t+1} \left(\frac{\Lambda_{t+1}}{\Lambda_t} \right) \left[1 + \int_{a_{t+1}^*}^{\infty} \frac{a - a_{t+1}^*}{a_{t+1}^*} f(a) da \right].
\]

Due to constant-returns-to-scale technology, only firms with \(a_i^t \geq a_t^* \) employ labor and produce output. This property implies that the liquidity constraint (14) is not always binding. It binds for only productive firms that borrow to finance their wage bills. The cutoff productivity level \(a_t^* \) for determining the binding liquidity constraint varies with the house price, delivering an essential role of liquidity premia in business cycles.

Equations (16) and (17) show that the house price is positively influenced by not only the expected discounted present value of rents but also the liquidity premium. This premium in turn depends on the next-period credit yield for all productive firms:

\[
\int_{a_{t+1}^*}^{\infty} \frac{a - a_{t+1}^*}{a_{t+1}^*} f(a) da.
\]

It follows from (15) that one-dollar liquidity provided by one housing unit in the next period allows firm \(i \) to hire \(1/w_{t+1} \) units of labor when \(a_{t+1}^i \geq a_{t+1}^* \). This generates the average profit of \((a_{t+1}^i A_{t+1}/w_{t+1} - 1) \) dollars when \(a_{t+1}^i \geq a_{t+1}^* \). The credit yield in (18) reflects the average profit generated by one-dollar liquidity.

III.3. Equilibrium. We consider the interior equilibrium in which production takes place, labor supply \(N_t \) is positive, and the house price premium \(b_t \) is positive.\(^7\)

Proposition 3. For the interior equilibrium, the household’s optimal choice is not to own housing units, i.e., \(h_{ot+1} = 0 \) for all \(t \).

It follows from equations (5) and (16) that the Lagrange multiplier \(\pi_t \) is positive and reflects the liquidity premium when \(b_t > 0 \) for all \(t \). By the complementary slackness condition, we deduce that \(h_{ot+1} = 0 \) for all \(t \). We normalize the house supply to unity. In equilibrium, all markets clear such that

\[
\int n_i^t di = N_t, h_{ot} = 0, \int h_i^t di = h_{rt} = 1, \int y_i^t di = Y_t = C_t.
\]

The household’ dividend income is \(D_t = \int_0^1 d_i^t di \). The following proposition summarizes the equilibrium dynamics of our model.

\(^7\)There is a trivial equilibrium such that \(b_t = 0 \) for all \(t \). In this trivial case, no production would take place. The equilibrium with \(b_t > 0 \) for all \(t \) is unique.
Proposition 4. The equilibrium system is given by nine equations (3), (4), (11), (16), (17),
\(a^*_t = w_t/A_t, \ Y_t = C_t, \)
\begin{align*}
Y_t &= \frac{A_t N_t \int_{a^*_t}^\infty a f(a)da}{1 - F(a^*_t)}, \\
w_t N_t &= (1 - F(a^*_t))b_t,
\end{align*}
for nine variables \(\{r_{ht}\}, \{w_t\}, \{N_t\}, \{Y_t\}, \{C_t\}, \{a^*_t\}, \{p^a_t\}, \{p_t\}, \) and \(\{b_t\} \).

We need only to show how to derive (19) and (20). Using a law of large numbers, we obtain (20) by aggregating (15). To derive (19), we first aggregate individual firm production functions by using (15) in Proposition 2. By a law of large numbers we have
\begin{align*}
Y_t &= A_t \int_0^1 a_i^t n_i^t di = \frac{A_t b_t}{w_t} \int_{a^*_t}^\infty a f(a)da.
\end{align*}
We obtain equation (19) by using equation (20) to eliminate \(w_t \) from the preceding equation.

IV. Economic Mechanism: An Illustration

We provide an economic mechanism that transmits a small structural shock into a large fluctuation in the price-rent ratio relative to output without relying on a large fluctuation in the stochastic discount factor. In Section IV.1 we show that the cutoff productivity level \(a^*_t \) plays a crucial role in this transmission mechanism. In Section IV.2 we derive a closed-form first-order solution and identify an SDF shock as a driving force of large price-rent fluctuations in the housing market. In Section IV.3 we quantify the volatility and the predictability based on the price-rent dynamics generated by SDF shocks.

IV.1. Intuition. A novel feature of our model, relative to the empirical DSGE literature, is that the cutoff productivity level \(a^*_t \) is endogenous and plays a crucial role in accounting for the dynamic links between the house price, the house rent, and aggregate real variables. We first demonstrate that \(a^*_t \) affects the real sector through TFP and labor reallocation. Equation (19) shows that our model generates endogenous TFP defined as
\begin{equation}
TFP_t = \frac{\int_{a^*_t}^\infty a f(a)da}{1 - F(a^*_t)}. \tag{21}
\end{equation}
A rise in \(a^*_t \) discourages less efficient firms from production and induces more efficient firms to produce. As a result, the TFP increases with the cutoff productivity level \(a^*_t \).

Dividing by \(w_t N_t \) on the two sides of equation (19) and using \(a^*_t = A_t/w_t \), we derive
\begin{equation}
Y_t = \frac{\int_{a^*_t}^\infty \frac{a}{a^*_t} f(a)da}{1 - F(a^*_t)} w_t N_t. \tag{22}
\end{equation}
This equation shows that aggregate output exceeds the factor income because firms make positive profits due to financial frictions. Labor is reallocated to more productive firms and the marginal product of labor for each firm is not equal to the wage rate.

Eliminating \(w_t \) from equations (4) and (22) with \(C_t = Y_t \) and using (6), we derive the labor-market equilibrium condition

\[
N_t^{1+\nu} = \frac{1 - F(a_t^*)}{\int_{a_t^*}^{\infty} \frac{a}{a^2} f(a) da}.
\]

(23)

An increase in \(a_t^* \) has three effects on \(N_t \). First, it raises endogenous TFP, which increases the profit markup over the labor cost as one can see from (22). Firms demand less labor, \textit{ceteris paribus}. Second, if we hold endogenous TFP fixed, it follows from (22) that the higher the cutoff productivity level, the less the profit markup. This selection effect increases demand for labor. Third, labor supply is reduced due to the wealth effect, as in the standard RBC model. The net effect on equilibrium labor hours \(N_t \) is ambiguous. When we use the estimated parameter values from our medium-scale empirical model developed in Section V, labor hours decrease for the simple model but increase for the medium-scale model.

We use the top panel of Figure 2 to illustrate how a rise of the cutoff productivity level \(a_t^* \) affects output and hours in equilibrium. The production line, representing the aggregate production function (19), is positively sloped on the \(N_t-Y_t \) plane. The vertical line on the plane represents equation (23). These two lines determine equilibrium output and hours for a given cutoff productivity level \(a_t^* \). In plotting these labor-output lines, we treat other factors, such as \(a_t^* \) and an SDF shock, as potential shifters. We assume that the initial equilibrium (Point A) is at the steady state.

Consider an SDF shock that raises the cutoff productivity level \(a_t^* \). A rise in \(a_t^* \) induces firms whose productivity is higher than \(a_t^* \) to produce. As a consequence, endogenous TFP increases and the production line shifts upward. At the same time, the labor-market line also shifts. In Figure 2 we assume that the labor-market line shifts to the left (we show how this can happen in Section IV.2). We can show that the effect of endogenous TFP is always stronger so that the shift in the production line dominates the shift in the labor-market line. As a result, output rises while hours fall (from Point A to Point B in Figure 2).

The mechanism illustrated in the top panel of Figure 2 for the real sector is only one side of the story in our model. The other is the essential role of liquidity premia in facilitating production. Firms would be unable to produce if they failed to acquire liquidity for financing working capital. It is clear from the liquidity constraint (14) that the finance of working capital depends on the liquidity premium \(b_t \) (the gap between the market price of house and the discounted present value of rents, i.e., \(b_t = p_t - p^*_t \)).

Next we study how an SDF shock drives the movements of the cutoff productivity level \(a_t^* \) and the liquidity premium \(b_t \). The bottom panel of Figure 2 illustrates the mechanism.
The asset-pricing curve on the $a_t^*-b_t$ plane represents the asset-pricing equation (17) for the liquidity premium holding other variables fixed. In Section IV.2 below, we show that an increase in the current cutoff productivity level a_t^* also raises the future cutoff productivity level a_{t+1}^*. According to (18), the future credit yield falls as a_{t+1}^* rises. Thus the asset-pricing curve describing (17) is downward sloping.

Eliminating N_t from (19) and (20) and using $a_t^* = w_t/A_t$, we can derive

$$b_t \int_{a_t^*}^{a_t} f(a) da = Y_t. \quad (24)$$

The curve that describes the relationship between a_t^* and b_t in (24) is upward sloping. Since equation (24) is derived from the liquidity constraints, we call this upward-sloping curve the “liquidity-constraint curve.” The two curves in the bottom panel of Figure 2 determine a_t^* and b_t jointly. Assume that Point A is at the steady state.

Now consider the impact of a positive SDF shock. The shock shifts the asset-pricing curve outward. A rise in a_t^* raises the TFP and consequently aggregate output (the top panel of Figure 2). An increase in aggregate output shifts the liquidity-constraint curve upward. The equilibrium moves from Point A to Point B (the bottom panel of Figure 2) with the resultant increase of the liquidity premium b_t higher than the increase of a_t^*. The large increase of b_t relaxes the liquidity constraint that is necessary to facilitate the output increase from productive firms.

In summary, our theoretical framework is capable of generating not only the comovement of asset prices and output but also the stronger response of asset prices than the response of output.

IV.2. Understanding the Impact of an SDF Shock. There are three shocks in this simple economy: θ_t, A_t, and ξ_t. The key to understanding how these shocks influence price-rent dynamics and their impact on the aggregate economy is to analyze how these shocks affect the cutoff productivity level a_t^*. For this model we are able to obtain a closed-form solution to the log-linearized equilibrium system around the deterministic steady state. We use the closed-form solution to show that 1) an SDF shock, θ_t, is the only shock that drives the fluctuation of cutoff productivity a_t^* and 2) the other two shocks cannot generate the magnitude of price-rent dynamics as observed in the data. We then use the closed-form solution to verify the intuition developed in the preceding section.

Denote $\dot{x}_t = \log(x_t) - \log(x)$, where x_t is any variable of study and x is the corresponding deterministic steady state of x_t. The log-linearized expression for (21) is

$$\dot{TFP}_t = \frac{\eta \mu}{1 + \mu} \dot{a}_t^*, \quad (25)$$
where
\[\eta \equiv \frac{a^* f(a^*)}{1 - F(a^*)} > 0 \]
denotes the steady-state elasticity of the survival function and
\[\mu = \int_{a^*}^{\infty} \frac{a f(a) \, da}{1 - F(a^*)} - 1 > 0. \]

Hence the log-linearized equations for (19) and (23) are
\[
\begin{align*}
\hat{Y}_t &= \hat{N}_t + \hat{A}_t + \hat{TFP}_t, \quad (26) \\
\hat{N}_t &= -\frac{1}{1 + \nu} \mu \eta - (1 + \mu) \frac{1}{1 + \mu} \hat{a}_t^*. \quad (27)
\end{align*}
\]
These two equations give the log-linearized version of the production line and the labor-market line in Figure 2. Whenever \(\mu \eta > (1 + \mu) \), an increase in \(a_t^* \) shifts the labor-market line to the left up to the first-order approximation.

From (24) we derive the log-linearized equation
\[\hat{b}_t = \hat{Y}_t + \eta + 1 + \mu \frac{1}{1 + \mu} \hat{a}_t^*. \quad (28) \]
The log-linearized equation for (17) is
\[\hat{b}_t - \hat{Y}_t = E_t \left(\hat{b}_{t+1} - \hat{Y}_{t+1} + \hat{\theta}_{t+1} \right) - \frac{(1 - \beta) (1 + \mu)}{\mu} E_t \hat{a}^*_{t+1}. \quad (29) \]
The preceding two equations give the log-linearized version of the liquidity-constraint curve and the asset-pricing curve in Figure 2. Using (28) and (29) to eliminate \(\hat{b}_t - \hat{Y}_t \) and \(\hat{b}_{t+1} - \hat{Y}_{t+1} \), we obtain
\[\hat{a}^*_t = \rho \frac{1 + \mu}{\eta + 1 + \mu} \hat{\theta}_t + \left[1 - (1 - \beta) \frac{1 + \mu}{\mu} \frac{1 + \mu}{\eta + 1 + \mu} \right] E_t \hat{a}^*_{t+1}. \]
Solving this equation leads to
\[\hat{a}_t^* = \rho \frac{1 + \mu}{\eta + 1 + \mu} \frac{1}{1 - \rho \kappa} \hat{\theta}_t, \quad (30) \]
where
\[\kappa = 1 - (1 - \beta) \frac{1 + \mu}{\mu} \frac{1 + \mu}{\eta + 1 + \mu} < 1. \]

From equations (25), (26), and (27) we deduce
\[\hat{Y}_t = \hat{A}_t + \frac{1}{1 + \nu} \left(1 + \frac{\nu \eta \mu}{1 + \mu} \right) \hat{a}_t^*. \quad (31) \]
This equation indicates that, even though hours \(N_t \) may decrease with \(a_t^* \), output \(Y_t \) always increases with \(a_t^* \) up to the first-order approximation because the upward shift of the production line dominates the leftward shift of the labor-market line due to a large increase in endogenous TFP.

\(^8\)This condition is implied by the estimated values for our medium-scale model in Section VI.
One can see from equation (30) that both the aggregate technology shock A_t and the housing demand shock ξ_t play no role in influencing the cutoff productivity level a_t^*. To gauge the magnitude of how these shocks are transmitted to asset prices and real aggregate variables, we log-linearize equations (3), (11), and $p_t = p_t^a + b_t$ as

$$\hat{r}_{ht} = \hat{Y}_t + \hat{\xi}_t, \quad (32)$$
$$\hat{p}_t^a = E_t \left[\hat{\theta}_{t+1} + \hat{Y}_{t+1} - \hat{Y}_{t+1} + (1 - \beta)\hat{r}_{ht+1} + \beta \hat{p}_{t+1}^a \right], \quad (33)$$
$$\hat{p}_t = \frac{p^a}{p} \hat{p}_t^a + \left(1 - \frac{p^a}{p} \right) b_t, \quad (34)$$

where we use the steady-state equilibrium conditions to derive

$$\frac{p^a}{p} = \frac{\bar{\xi}(1 + \mu)}{\xi(1 + \mu) + \mu}.$$

Substituting (32) into (33) and solving $\hat{p}_t^a - \hat{Y}_t$ forward, we obtain

$$\hat{p}_t^a = \hat{Y}_t + \frac{\rho_{\theta}}{1 - \beta \rho_{\theta}} \hat{\theta}_t + \frac{(1 - \beta) \rho_{\xi}}{1 - \beta \rho_{\xi}} \hat{\xi}_t. \quad (35)$$

From equations (25), (27), and (30), one can see that the aggregate technology shock A_t does not exert any influence on \hat{TFP}_t, \hat{a}_t^*, and \hat{N}_t. Thus the A_t shock would have the same one-for-one effect on output Y_t [equation (31)], the liquidity premium b_t [equation (28)], the house rent r_{ht} [equation (32)], the expected discounted present value of rents \hat{p}_t^a [equation (35)], and the house price \hat{p}_t [equation (34)]. Because the house price is much more volatile than the house rent and output in the data, the aggregate technology shock in our model cannot be the main source for generating the link between price-rent dynamics and output fluctuations.

As in Liu, Wang, and Zha (2013), the housing demand shock ξ_t influences the house rent through equation (32) and in turn the house price through equation (34). But Liu, Wang, and Zha (2013) abstract from the central and challenging issue addressed in this paper: the fluctuations of house prices relative to those of house rents over business cycles. In our model, since the housing demand shock does not affect the liquidity premium, it has no influence on hours and output. Moreover, a one percent increase in the housing demand shock ξ_t raises the house rent by one percent, but raises the house price by less than one percent because

$$\frac{(1 - \beta) \rho_{\xi} p^a}{1 - \beta \rho_{\xi} p} < 1.$$

Thus the housing demand shock is unable to generate price-rent dynamics observed in the data (Figure 1).

By contrast, it follows from equation (30) that the SDF shock $\hat{\theta}_t$ is the only shock that influences cutoff productivity and therefore the TFP. A positive SDF shock raises the cutoff productivity level \hat{a}_t^*. The increase of the cutoff productivity level \hat{a}_t^* raises endogenous
liquidity premium, TFP, causing aggregate output to rise (see equation (26)). In equilibrium, the increase of the liquidity premium \(\hat{b}_t \) is greater than the increase of both output and cutoff productivity, as shown in equation (28).

IV.3. Volatility and Predictability. Figure 3 illustrates the quantitative importance of financial and real dynamic responses to an SDF shock with the following parameterization:

\[
\nu = 1.023, \eta = 9.313, \mu = 0.148, \bar{\xi} = 0.135, \beta = 0.994, \rho_\theta = 0.95, \sigma_\theta = 0.001.
\]

Except for the values of \(\rho_\theta \) and \(\sigma_\theta \), all other parameter values are taken from the estimates obtained in Section VI. The values of \(\rho_\theta \) and \(\sigma_\theta \) are selected for the best visual effect without altering the model’s implications. The top panel of Figure 3 shows that, in log value, the response of the house price (the star line) is about ten times the response of the house rent (the circle line) as well as the response of cutoff productivity (the dashed line). The movement in the house price is mostly driven by the liquidity premium (the solid line). The bottom panel of Figure 3 shows that the responses of output (the circle line) is mostly driven by the response of endogenous TFP (the solid line).

The simple model is revealing because it helps explain the volatility and predictability pattern observed in the data. We discuss volatility first. The impulse responses displayed in Figure 3 indicate that a small persistent SDF shock generates a large volatility of the price-rent ratio. The structural model, moreover, allows us to decompose the price-rent ratio volatility into two components: one attributed to the SDF fluctuation itself and the other attributed to the liquidity premium. To see how to perform this structural decomposition, we use equations (28), (30), (34), and (35) to derive

\[
\hat{p}_t - \hat{r}_{ht} = \frac{p_a}{p} \frac{\rho_\theta}{1 - \beta \rho_\theta} \hat{\theta}_t + \frac{b}{p} \frac{\rho_\theta}{1 - \kappa \rho_\theta} \hat{\theta}_t + \left[\frac{p^\rho (1 - \beta) \rho_\xi}{p} \frac{1 - \beta \rho_\xi - 1}{1 - \beta \rho_\xi} \right] \hat{\xi}_t. \tag{36}
\]

The first two terms on the right-hand side of equation (36) reflect the impact of the stochastic discount factor and the liquidity premium triggered by the SDF shock \(\hat{\theta}_t \). The volatility of this shock reflects its direct effect. Using the above parameterization we calculate the (unconditional) volatility of \(\hat{\theta}_t \) as \(3.2026 \times 10^{-3} \), which is very small. But the volatility of the price-rent ratio is \(5.5034 \times 10^{-2} \), which is much larger than the volatility of \(\hat{\theta}_t \) itself.

Where does this high volatility come from? We use equation (36) to calculate the volatility of the SDF as \(0.02794 \) and the volatility of the liquidity premium as \(2.7093 \times 10^{-2} \), accounting for 50.769% and 49.23% of the volatility of the price-rent ratio. The remaining 0.001% volatility is due to the correlation between SDF and the liquidity premium. This simple calculation shows that the liquidity premium generated from the model’s mechanism contributes to about a half of the volatility of the price-rent ratio. In the estimated model presented in Section VIII, the contribution from the SDF fluctuation is even smaller.
We now discuss the predictability pattern. Using equations (26), (30), (32), and (36), we derive

\[
\hat{r}_{t+1} - \hat{r}_t \equiv \frac{p_a}{p} \frac{\rho_\theta}{1 - \beta \rho_\theta} \hat{\theta}_{t+1} + \frac{b}{p} \frac{\rho_\theta}{1 - \kappa \rho_\theta} \Delta \hat{\theta}_{t+1} + \frac{p^a (1 - \beta) \rho_\xi}{p} \Delta \hat{\kappa}_{t+1} + \Delta \hat{A}_{t+1} + \frac{1}{1 + \nu} \frac{1 + \mu + \nu \eta \mu}{1 - \rho_\theta \kappa} \Delta \hat{\theta}_{t+1},
\]

(37)

where \(\Delta \hat{\theta}_{t+1} \equiv (1 - \rho_\theta) \hat{\theta}_t + \sigma_\theta \varepsilon_{\theta t+1} \) and similar notations apply to other variables. Equation (36) indicates that an increase in the SDF shock \(\hat{\theta}_t \) raises the price-rent ratio \(\hat{p}_t - \hat{r}_t \). Given the AR(1) specification of this shock, equation (37) shows that an increase of \(\hat{\theta}_t \) lowers the house return in the future. Thus an increase in the price-rent ratio induced by an increase in the SDF shock predicts a negative house return in the future. In other words, an increase in the rent-price ratio predict a positive house return in the future. By contrast, other shocks such as the housing demand shock and the technology shock cannot generate such a predictability pattern. In Section VIII we use the estimated model to show that the predictive power of the rent-price ratio for the house return increases with the forecast horizon, as in the observed data.

V. A Tractable Medium-Scale Structural Model

In this section we build up a medium-scale dynamic general equilibrium model that aims to fit the house price-rent data and other macroeconomic data in the U.S. economy. By introducing capital, this medium-scale model is an expansion of the basic model developed in Section III. Although the dynamics and equilibrium conditions are much more complicated, all the intuition and insights discussed in Section III carry over to this medium-scale model.

We consider an economy populated by a continuum of identical households, a continuum of competitive intermediate goods producers of measure unity, and a continuum of heterogeneous competitive firms of measure unity. The representative household rents out capital and supplies labor to intermediate-goods producers. Firms use intermediate goods as input to produce final consumption good. Financial frictions occur in the final-good sector.

V.1. Households. The representative household maximizes the expected lifetime utility

\[
E_0 \sum_{t=0}^{\infty} \Theta_t \beta^t \left[\log (C_t - \gamma C_{t-1}) + \xi_t \log H_t - \psi_t \frac{N_t^{1+\nu}}{1+\nu} \right],
\]

(38)

where \(C_t \) represents aggregate consumption, \(N_t \) is the household’s total labor supply, and \(H_t \) denotes housing services. The parameters \(\beta \in (0,1) \) and \(\gamma \in (0,1) \) represent the subjective discount factor and habit formation. The variables \(\theta_t \equiv \Theta_t/\Theta_{t-1} \), \(\xi_t \), and \(\psi_t \) are exogenous shocks to SDF, housing demand, and labor supply that follow AR(1) processes (1), (2), and

\[
\log \psi_t = (1 - \rho_\psi) \log \bar{\psi} + \rho_\psi \log \psi_{t-1} + \sigma_\psi \varepsilon_{\psi t},
\]
where $\sigma_{\psi} > 0$, $|\rho_{\psi}| < 1$, and $\varepsilon_{\psi,t}$ is an i.i.d. standard normal random variable.

The household chooses consumption C_t, investment I_t, housing services H_t, capital utilization rate u_t, and bonds B_{t+1}, subject to the intertemporal budget constraint

\[
C_t + \frac{I_t}{Z_t} + \frac{B_{t+1}}{R_{ft}} + r_{ht}H_t \leq w_tN_t + u_tr_{kt}K_t + D_t + B_t, \tag{39}
\]

where K_t, w_t, D_t, r_{kt}, r_{ht}, and R_{ft} represent capital, wage, dividend income, the rental rate of capital, the house rent, and the risk-free interest rate.\(^9\) The variable Z_t represents an aggregate investment-specific technology shock that has both permanent and transitory components (Greenwood, Hercowitz, and Krusell, 1997; Krusell, Ohanian, Ríos-Rull, and Violante, 2000; Justiniano and Primiceri, 2008):

\[
Z_t = Z_t^p v_{zt}, \quad Z_t^p = Z_{t-1}^p g_{zt},
\]

\[
\log g_{zt} = (1 - \rho_z) \log \bar{g}_z + \rho_z \log (g_{z,t-1}) + \sigma_z \varepsilon_{zt}, \tag{40}
\]

\[
\log v_{zt} = \rho_v \log v_{z,t-1} + \sigma_v \varepsilon_{v,t}, \tag{41}
\]

where $|\rho_z| < 1$, $|\rho_v| < 1$, $\sigma_z > 0$, $\sigma_v > 0$, and ε_{zt} and $\varepsilon_{v,t}$ are i.i.d. standard normal random variables.

Investment is subject to quadratic adjustment costs (Christiano, Eichenbaum, and Evans, 2005). Capital evolves according to the law of motion

\[
K_{t+1} = (1 - \delta(u_t))K_t + \left[1 - \frac{\Omega}{2} \left(\frac{I_t}{I_{t-1}} - \bar{g}_t\right)^2\right] I_t, \tag{42}
\]

where $\delta_t \equiv \delta(u_t)$ is the capital depreciation rate in period t, \bar{g}_t denotes the long-run growth rate of investment, and Ω is the investment adjustment cost parameter.

V.2. Intermediate-Goods Producers. There is a continuum of intermediate goods. Each intermediate good $j \in [0, 1]$ is produced by a continuum of identical competitive producers of measure unity. The representative producer owns a constant-returns-to-scale technology to produce good j by hiring labor $N_t(j)$ and renting capital $K_t(j)$ from households. The producer’s decision problem is

\[
\max_{N_t(j), K_t(j)} P_{X_t}(j)X_t(j) - w_tN_t(j) - r_{kt}K_t(j), \tag{43}
\]

where $X_t(j) \equiv A_tK_t(j)^\alpha N_t(j)^{1-\alpha}$ and $P_{X_t}(j)$ represents the competitive price of good j. The aggregate technology shock A_t consists of permanent and transitory components (Aguiar and Gopinath, 2007)

\[
A_t = A_t^p v_{a,t}, \quad A_t^p = A_{t-1}^p g_{at}, \quad \log g_{at} = (1 - \rho_a) \log \bar{g}_a + \rho_a \log (g_{a,t-1}) + \sigma_a \varepsilon_{at},
\]

\(^9\)If we allow households to trade housing units, their holdings will be zero given the short-sales constraint shown in Section II. For notational simplicity, we set the household’s holdings of housing units to zero.
\[
\log \nu_{a,t} = \rho_{\nu_a} \log \nu_{a,t-1} + \sigma_{\nu_a} \varepsilon_{\nu_{a,t}},
\]
where \(|\rho_a| < 1\), \(|\rho_{\nu_a}| < 1\), \(\sigma_a > 0\), \(\sigma_{\nu_a} > 0\), and \(\varepsilon_{at}\) and \(\varepsilon_{\nu_{a,t}}\) are i.i.d. standard normal random variables.

V.3. Final-Good Firms. There is a continuum of heterogeneous competitive firms. Each firm \(i \in [0,1]\) combines intermediate goods \(x^i_t(j)\) to produce the final consumption good with the aggregate production technology

\[
y^i_t = a^i_t \exp \left(\int_0^1 \log x^i_t(j) dj \right),
\]
where \(a^i_t\) represents an idiosyncratic productivity shock. Firm \(i\) purchases intermediate good \(j\) at the price \(P_{xt}(j)\). The total spending on working capital is \(\int_0^1 P_{xt}(j)x^i_t(j) dj\). The firm finances working capital in the form of trade credit prior to the realization of its revenues \(y^i_t\).

Firm \(i\) buys and sells housing units as well as rents them out to households. The firm’s income comes from profits and rents. Its flow-of-funds constraint is given by

\[
d^i_t + p_t(h_{t+1}^i - h^i_t) = y^i_t - \int_0^1 P_{xt}(j)x^i_t(j) dj + r_h h^i_t, \ t \geq 0, \text{ with } h^i_0 \text{ given.} \tag{45}
\]

The firm’s objective (7) is to maximize the discounted present value of dividends.

In each period \(t\), prior to sales of output and housing, firm \(i\) must borrow to finance its input costs. Intermediate-goods producers extend trade credit to the firm at the beginning of period \(t\) and allows it to pay input costs at the end of the period using revenues from sales of output and housing. The firm has limited commitment and may default on the trade credit. In the event of default, the firm would retain its production income \(y^i_t\) as well as its house holdings \(h^i_t\). But the firm would be denied access to financial markets in the future. In particular, it would be barred from selling any asset holdings for profit and from obtaining loans for working capital. The following incentive compatibility constraint is imposed on the firm’s optimization problem to make the contract self-enforceable:

\[
V_t(h^i_t, a^i_t) \geq (y^i_t + r_h h^i_t) + \beta E_t \frac{A_{t+1}}{A_t} V^\alpha_{t+1}(h^i_t), \text{ all } t, \tag{46}
\]
where \(V_t(h^i_t, a^i_t)\) denotes the firm’s value without default and \(V^\alpha_{t+1}(h^i_t)\) denotes the firm’s value in the default state. As discussed in Section III, equation (10) still holds.

V.4. Equilibrium. The markets clear for the housing sector and the intermediate-goods sector:

\[
\int h^i_t di = H_t = 1, \quad \int x^i_t(j) dj = X_t(j) = A_t K_t(j)^\alpha N_t(j)^{1-\alpha}.
\]

Since the equilibrium is symmetric for intermediate-goods producers, we have

\[
P_{xt}(j) = P_{xt}, \ N_t(j) = N_t, \ K_t(j) = u_t K_t, \ X_t(j) = X_t = A_t (u_t K_t)^\alpha N_t^{1-\alpha},
\]
for all \(j\). The household’s dividend income is \(D_t = \int_0^1 d^i_t di\).
A competitive equilibrium consists of price sequences \(\{w_t, r_{ht}, r_{kt}, p_t, b_t, R_{ft}, P_{Xt}\}_{t=0}^{\infty}\), allocation sequences \(\{C_t, I_t, u_t, N_t, Y_t, B_{t+1}, K_{t+1}, X_t\}_{t=0}^{\infty}\), and a cutoff productivity sequence \(\{a_t^*\}_{t=0}^{\infty}\), such that (1) given the prices, the allocations and cutoff productivity solve the optimizing problems for the households, intermediate-goods producers, and final-good firms; and (2) all the markets clear. Appendices B–D present all the details of characterizing and solving the equilibrium.

VI. Empirical Analysis

The purpose of building the medium-scale model in the preceding section is to explain and understand, through the lenses of the structural model, house price-rent fluctuations over the U.S. business cycle. To this end, we take the Bayesian approach and fit the log-linearized model to the six key U.S. time series over the period from 1987Q1 to 2013Q4: the house price index, the house rent index, the quality-adjusted relative price of investment, real per capita consumption, real per capita investment (in consumption units), and per capita hours worked. Appendix E presents the detailed description of the data and Appendix F provides the details of the estimation method.

VI.1. Price and Rent Data. While our structural model is suitable for the commercial real-estate market, we adopt the residential real estate price and rent data for estimation. One reason is that the commercial property price index is not nearly as well measured as the CoreLogic home price index. The series named as “FL075035503” from the Flow of Funds Accounts (FFA) database provided by the Board of Governors of the Federal Reserve System is arguably the most comprehensive measure of commercial real-estate price index. Even for such an authoritative series, the price index up through 1995Q4 is not based on repeated sales but instead relies on a weighted-average of three appraisal-based commercial property price series (per square foot): retail property, office property, and warehouse/industrial property. These series come from National Real Estate Investor (NREI). The weights applied to the NREI were calculated using annual data from the Survey of Current Business and are not revised. From 1996Q1 onward, the commercial property price index switches to the Costar Commercial Repeat Sales Index. The volume of transactions for the commercial real estate is often much smaller than that for the residential real estate, especially during the recent financial crisis period. For this and other reasons, the residential home price index based on CoreLogic repeated sales can serve as a proxy for the commercial real-estate price index. This approximation is reasonable because the residential home price index is highly correlated

\(^{10}\)We use 1987Q1 as a starting date because the CoreLogic home price data before 1987 do not have as representative a coverage of counties as do the post-1986 data.

with the commercial real-estate price index. Figure 4 displays the commercial price index along with the residential price index. As one can see, these two series move closely together and their correlation is as high as 0.91.12

Residential rental price index for housing is constructed by using the Fisher chain-weighted aggregate of PCE imputed rental of owner occupied non-farm housing price index and PCE tenant rent price index, where PCE stands for personal consumption expenditure. As argued in Campbell, Davis, Gallin, and Martin (2009), the residential rental price series is reliably measured. The commercial rent series, on the other hand, is difficult to measure. One series, provided by CBRE Econometric Advisors, is constructed by the Torto Wheaton Research (TWR) hedonic approach (Wheaton and Torto, 1994) and (Malpezzi, 2002, Chapter 5).13

The main problem is that the rent data for commercial properties are for newly rented properties, which tend to be more volatile than rents on all rented properties. As one can see in Figure 5, the TWR rent index of retail property and the overall TWR commercial property rental price index are more volatile than our residential rental price index. Nonetheless, the commercial rental price index and the residential rental price index are highly correlated. The correlation between the retail property rent index and the residential rent index is 0.943, while the correlation between the retail property rent index and the overall commercial property rent index is 0.957.

The volatility of commercial property rent indices, measured as $\text{std} (\Delta \log(r_{ht}))$, is 0.766% for the retail property rent index and 1.231% for the overall commercial rent index, in comparison to 0.278% for the residential property rent index. Note that the volatility of the commercial property price index, measured by $\text{std} (\Delta \log(p_t))$, is also larger than that of the residential house price index, with 3.984% for the commercial price versus 2.759% for the residential price. Thus the large price-rent ratio volatility exists for commercial properties as well.

VI.2. Parameter Estimates. Our tractable model fits the data remarkably well and is competitive against the Minnesota-prior BVAR model.14 The model’s marginal data density is 2,082 in log value, while the BVAR’s marginal data density is 2,078 in log value. Along with 90% probability bounds, Table 1 reports the estimates of key structural parameters and Table 2 reports the estimates of exogenous shock processes.

12Our model results remain when the model is fit to the commercial property price index. The commercial property price index from the Real Capital Analytics (RCA), not reported here, has even a higher correlation with the residential home price index used in this paper.

13See Geltner (2011) for the criticism of this approach.

14Following Smets and Wouters (2007) and making our work comparable with the empirical DSGE literature, we compare our dynamic general equilibrium model with the Minnesota-prior BVAR model. The result that our structural model can compete with the BVAR model in fit is, by itself, a significant achievement.
According to Table 1, the estimated inverse Frisch elasticity of labor supply is about 1.0, consistent with ranges of values discussed in the literature (Keane and Rogerson, 2011). The estimated survival elasticity η is high, implying both a significant heterogeneity in firms’ productivities and the importance of endogenous TFP. This large value, along with the estimated value $\mu = 0.148$ through steady state relationships, implies that the condition $\mu \eta > 1 + \mu$ is satisfied. The steady-state elasticity of capacity utilization δ'' / δ' is 4.0 (greater than the value discussed in the literature (Jaimovich and Rebelo, 2009)), suggesting that the effect of capacity utilization on output fluctuations is small and that our model does not have to rely on variable capacity utilization to fit the data. In a similar way, the estimated habit formation γ and capital-adjustment cost Ω are very small in magnitude. These factors are not a driving force for the dynamics of consumption and investment. The posterior probability intervals reported in Table 1 indicate that all these structural parameters are tightly estimated.

Table 2 reports the estimated persistence and standard-deviation parameters of exogenous shock processes. Among all shocks, the SDF shock is the most persistent process. Other persistent shocks include the technology shock, the housing demand shock, and the labor supply shock. But the estimated standard deviation for the SDF shock process is substantially smaller than those for all other shock processes. Indeed, the unconditional standard deviation for the SDF shock process is only 0.0058. By contrast, the unconditional standard deviation is 0.0198 for housing demand, 0.0175 for stationary aggregate technology, and 0.0770 for labor supply. According to the 90% error bounds, the differences are both economically and statistically significant. The error bounds for the estimated standard deviation of the SDF shock process are particularly tight. Such a small standard deviation implies that any large effects on asset prices and real aggregate variables must come from the model’s internal propagation mechanism, which will be discussed in Section VII.

VI.3. Dynamic Responses. In this subsection we discuss the dynamic impact on key financial and real variables of four most relevant shocks: an SDF shock, a housing demand shock, a stationary technology shock, and a labor supply shock. The primary empirical finding is as follows. Although the estimated volatility of a shock to the stochastic discount factor is many times in magnitude less than the estimated volatilities of shocks to housing demand, technology, and labor supply, it accounts for most of the interaction between price-rent dynamics and real aggregate fluctuations. By comparison, shocks to housing demand, technology, and labor demand are all unable to generate large price-rent fluctuations.
Table 3 reports variance decompositions by the contributions from these four shocks for key financial and real variables (in log level) over the 24-quarter forecast horizon. The stationary technology shock explains a majority of output fluctuations on impact (64.77%), but over the longer horizon the SDF shock dominates the technology shock in explaining output fluctuations (reaching more than 30% at the end of the sixth-year horizon). The labor supply shock explains most of the hours fluctuation but not much of the output fluctuation. The housing demand shock affects only the house rent; and its contribution to rent fluctuations declines steadily over time from 59% on impact to 20% at the end of the forecast horizon. In Liu, Wang, and Zha (2013), the housing demand shock is important in explaining fluctuations of real variables. Once one takes into account the observation that the house price is more volatile than the house rent, a shock to housing demand no longer plays a role in real business cycles.

Figure 6-9 report the impulse responses (in log level) to all four shocks. The estimated dynamic response of the house rent to a housing demand shock is substantially higher than the corresponding response of the house price, making the fluctuations in the house price in relation to the rent inconsistent with the data (Figure 10 versus Figure 6). Moreover, since the housing demand shock has no impact on the other variables in the model, we do not display them in Figure 6. The intuition for this result has been explained in Section IV.2.

Shocks to the labor supply and technology also fail to generate the price-rent fluctuation in magnitude comparable to the data. As shown in Figures 7 and 8, a labor supply shock produces simultaneous responses of rent and price almost one for one, while a technology shock generates exactly one-for-one responses. A labor supply shock has a much stronger impact on hours than a technology shock, but its dynamic impact on all other real variables is weaker. The response of output to a labor supply shock comes mostly from the response of hours, while a technology shock has a direct impact on output. Both shocks generate a much weaker response of endogenous TFP than the output response.

By contrast, a shock to the SDF drives most fluctuations in both endogenous TFP and the house price without a large effect on the rent fluctuation (Figure 9). Thus this shock is capable of generating a majority of price-rent fluctuations. This result is remarkable given how small the standard deviation of this shock process is as compared to other shock processes.

Figure 10 reports the 3×3 matrix of impulse responses of output, house price, and house rent from an estimated Bayesian vector autoregression (BVAR) model with the recursive ordering suggested by Sims (1980) and Christiano, Eichenbaum, and Evans (2005). Since cointegration relationships are important for asset prices (Hansen, Heaton, and Li, 2008), we

15 We do not report the error bounds on variance decompositions for reasons articulated in Sims and Zha (1999). The error bands are best reported for the corresponding impulse responses.
use the prior proposed by Sims and Zha (1998) that favors unit roots and cointegration. One can see from the three graphs along the diagonal of the graph matrix that output, house price, and house rent all have large hump-shaped responses.16 The BVAR model does not identify any fundamental economic shock but rather provides informative reduced-form evidence. For our structural model, such large hump-shaped responses (especially the response of output) are identified as those to an SDF shock (Figure 9). A shock to aggregate technology leads to a hump-shaped response of the house price, but the magnitude of volatility is too small compared to the price response to an SDF shock (Figure 8 versus Figure 9).

The first two graphs in the second column of Figure 10 also show that the house price tends to comove with output. Such a comovement can be generated by our structural model and is indeed captured by the dynamic responses to an SDF shock (Figure 9).

As explained in Section IV, endogenous TFP is a primary transmission channel for the significant effect of the liquidity premium on aggregate output to take place. A more important factor is the strong propagation effect generated by an SDF shock, as shown in Figure 9. Despite our assumption that the SDF shock process is AR(1), the house price rises on impact and continues to rise over time in response to the shock. This large hump-shaped response17 is generated entirely by the model’s internal mechanism, which will be discussed in Section VII. The rent response is much smaller by comparison. As a result, a small persistent shock to the stochastic discount factor generates large price-rent dynamics. The response of endogenous TFP is strong on impact and stays elevated, while the response of aggregate output exhibits a large hump shape. Unlike the calibrated simple model in Section IV, the response of hours here is positive. We will discuss the intuition behind this result in Section VII.

In summary, a technology shock has a direct and significant effect on output, but it causes endogenous TFP to fall (Figure 8). We will explain the latter result further in Section VII. Even though there is a hump-shaped response of consumption, the output response rises on impact and declines steadily (no hump shape). In comparison to the effect of an SDF shock, the investment response to a technology shock rises more significantly on impact but declines more rapidly in subsequent periods (Figures 8 and 9). Labor supply and housing demand shocks have even less impact on consumption, investment, and output (Figures 6 and 7). Unlike a shock to the stochastic discount factor, these three shocks play almost no role in the price-rent fluctuation over the business cycle.

16The response of output in the first column of Figure 10 will eventually come down, so its hump shape is even larger than the graph shows.

17It is hump-shaped because the response is near the peak at the end of the forecast horizon and will eventually fall.
VII. Transmission Channel and Propagation Mechanism

Since all of our exogenous shocks are assumed to follow an AR(1) process, it is not surprising that we have the monotone responses in the simple model discussed in Section IV. For our medium-scale structural model, therefore, it is all the more important to understand the inherent mechanism that generates hump-shaped impulse responses of both asset prices and real variables following an SDF shock. With the presence of capital accumulation, households are now able to postpone their consumption by accumulating productive capital. This intertemporal substitution between current and future consumption contributes to the hump-shaped response of consumption even without habit (our estimate of habit is very small). Such a result is not new in the RBC literature.

What is new is that our medium-scale structural model identifies the source that accounts for the observed hump-shaped responses of the house price and output (Section VI). Since our estimate of investment-adjustment costs is negligible, its contribution to the hump-shaped response of output is largely muted. Indeed, the dynamic response of output in response to an aggregate technology shock is monotone (Figure 8). By comparison, a monotone SDF shock is capable of generating large hump-shaped responses of both asset prices and aggregate output. What is the transmission channel and what is the propagation mechanism?

To delve into intuitive answers, we begin with Figure 11. The figure plots the asset-pricing curve and the liquidity-constraint curve, which represent equations (17) and (24). These two equations continue to be the equilibrium conditions for our medium-scale structural model, except

$$\Lambda_t = \frac{\Theta_t}{C_t - \gamma C_{t-1}} - \beta \gamma E_t \frac{\Theta_{t+1}}{C_{t+1} - \gamma C_t},$$

(47)

and the cutoff productivity level a^*_t is now determined in Appendix B. Now consider a positive stationary shock to aggregate technology. Point A in Figure 11 represents the initial equilibrium at the steady state. The technology shock increases aggregate output directly and hence shifts the liquidity-constraint curve upward. The rise of output has a positive wealth effect on consumption, shifting the asset-pricing curve upward as well. Since the direct effect of the aggregate technology shock on output is larger than the indirect effect on consumption, the cutoff productivity level declines and the equilibrium moves from Point A to Point B on impact.

In the subsequent period, an increase of consumption as a result of intertemporal substitution continues to shift the asset-pricing curve upward, but output drops (no hump shape) because the technology shock begins to decline. The direct output effect shifts the liquidity-constraint curve downward, resulting in a lower value of cutoff productivity and dampening the rise of the liquidity premium. The equilibrium moves from Point B to Point C in Figure 11. Over time, the direct output effect continues to dominate and the liquidity premium
will begin to decline. Consequently, we see from Figure 8 the decline of cutoff productivity and no hump shape of the output response, even though the responses of consumption and the liquidity premium are hump-shaped.

By contrast, the dynamic impact of a positive SDF shock presents a different picture. Figure 12, similar to Figure 2, has two panels. The top panel plots the production and labor-market curves. The bottom panel plots the asset-pricing and liquidity-constraint curves. We use these two panels to illustrate how the financial sector interacts with the real sector and how the interaction sheds light on the propagation mechanism that is lacking in Section IV. The production curve describes aggregate output

\[Y_t = (TFP_t) A_t (u_t K_t)^\alpha N_t^{1-\alpha}. \]

(48)

To derive the labor-market curve, we use the labor supply equation

\[\Lambda_t w_t = \Theta_t \psi_t N_t^{\nu} \]

(49)

and the labor demand equation

\[(1 - \alpha) Y_t = \int_{a^*_t}^{\infty} \frac{a f(a)}{1 - F(a^*_t)} da \frac{1}{w_t N_t} \]

(50)

to eliminate \(w_t \). We then obtain the equation for the labor-market curve

\[N_t^{1+\nu} = \frac{1 - F(a^*_t)}{\int_{a^*_t}^{\infty} \frac{a f(a)}{1 - F(a^*_t)} da} \frac{(1 - \alpha) Y_t \Lambda_t}{\Theta_t \psi_t}. \]

(51)

In contrast to Figure 2, the labor-market curve is upward sloping in Figure 12 because \(Y_t \) and \(\Lambda_t / \Theta_t \) can no longer cancel each other out.

Suppose that the initial equilibrium is Point A at the steady state for both panels of Figure 12. According to equations (17) and (47), a positive shock delivers immediate impetus to the liquidity premium, shifting the asset-pricing curve upward and raising cutoff productivity. A rise in cutoff productivity increases aggregate output through endogenous TFP as the transmission channel. An increase in aggregate output causes the liquidity-constraint curve to shift upward [equation (24)]. The direct effect of the SDF shock on asset prices dominates the indirect effect on aggregate output so that the net effect on cutoff productivity is positive (Figure 11 vs. the bottom panel of Figure 12). The equilibrium moves from Point A to Point B on impact, with an increase of both cutoff productivity and the liquidity premium.

18The preceding three equations are derived in Appendix B.
As an increase of cutoff productivity raises aggregate output and thus shifts the production curve upward, it simultaneously shifts the labor-market curve upward so long as the term \(\frac{1}{1 - F(a^*_t)} \int_{a^*_t}^{\infty} \frac{a}{a^*_t} f(a) \, da \) increases with \(a^*_t \) and the impact of \(\Lambda_t \) is relatively small. When the rise of the production curve dominates the rise of the labor-market curve, both output and hours increase with cutoff productivity \(a^*_t \) and the equilibrium moves from Point A to Point B on impact (the top panel).

In the simple model articulated in Section III, no matter how persistent the AR(1) process of the SDF shock is, one cannot obtain a hump-shaped response of either house price or aggregate output. With capital accumulation in our medium-scale model, it is optimal for households to postpone consumption for investment. Thus the hump-shaped response of consumption leads to a further upward shift of the asset-pricing curve in subsequent periods, pushing cutoff productivity higher. A higher cutoff productivity level, in turn, leads to higher endogenous TFP and higher aggregate output. As a result of higher aggregate output, the liquidity-constraint curve shifts further up, generating an even higher liquidity premium. As long as the SDF shock is very persistent as is seen in our estimation, the effect on the asset-pricing curve is likely to continue to dominate the effect on the liquidity-constraint curve, moving the equilibrium from Point B to Point C (the bottom panel of Figure 12) with an increase in both liquidity premium and cutoff productivity.

At the same time, a higher cutoff productivity level shifts both the production curve and the labor-market curve further upward to support higher aggregate output while hours begin to decline, moving the equilibrium from Point B to Point C (the top panel of Figure 12). The propagation mechanism described here generates the hump-shaped responses of aggregate output and amplify small SDF shocks to large price-rent fluctuations. The financial sector cannot be understood apart from the real sector: both panels of Figure 12 are necessary for understanding the interaction between asset prices and the real economy.

VIII. Volatility and Predictability

One of our key findings is that the estimated standard deviation for the SDF shock process is considerably smaller than the estimated standard deviations for all other shock processes. A natural question is how much of the observed volatility is attributed to the volatility of SDF shocks. Table 4 reports the observed and model-generated volatilities of output and the price-rent ratio, along with the model-generated volatility of the SDF shock itself. Using the posterior mode estimates of model parameters, we simulate a sample of 108 periods (the

\[\text{As shown in Section IV.2, if } \mu \eta > (1 + \mu), \text{ then this term increases with } a^*_t \text{ up to the first-order approximation.} \]
LIQUIDITY PREMIA, PRICE-RENT DYNAMICS, AND BUSINESS CYCLES

We repeat the simulation 10,000 times and compute the median volatility of output, the house price, and the house rent, along with 90% probability bounds. According to the median value, the volatility of SDF shocks is diminutive but these shocks are amplified and account for 58% of the observed output volatility and most of the observed price-rent ratio volatility.

To ascertain whether the SDF volatility is not the main source of the price-rent ratio volatility, we compute the SDF volatility by removing the liquidity premium from the model (i.e., by setting $\hat{b}_t = 0$) and then decompose the price-rent ratio volatility into two components. One component is the contribution from the SDF volatility and the remaining contribution is due to the liquidity premium. The price-rent ratio volatility is 2.731%, of which 0.883% comes from the SDF volatility and 1.848% is due to the liquidity premium. Thus a majority of the price-rent ratio volatility does not rely on the SDF volatility but rather stems from the volatility of liquidity premium magnified by the transmission mechanism as detailed in Section VII.

Table 5 reports a similar structural decomposition of price-rent dynamics in response to an SDF shock at different horizons. The SDF contribution is obtained by first computing the impulse responses of the price-rent ratio with the liquidity premium channel removed and then calculating the percentage contribution to the original price-rent responses. The remaining percentage is due to the liquidity premium. As shown in the table, the percentage of the SDF contribution steadily declines over time. Behind the driving force for price-rent dynamics over the long horizon are the dynamic responses of liquidity premium generated by the interaction between the real sector and the financial sector as discussed in Section VII.

In the data the rent-price ratio has a predictive power for future house returns, especially over the long horizon. When we run the OLS predictive regression

$$r_{t\rightarrow t+k} = \alpha_0 + \alpha_1 \log (r_{ht}/p_t) + \varepsilon_{t,k},$$

where the house return from t to $t+k$ is defined as $r_{t\rightarrow t+k} = \log (p_{t+k}/p_t)$, the slope coefficient α_1 not only is positive but also becomes larger as k increases from one quarter to 20 quarters. The regression fit, measured by R^2, increases with k as well. In Section IV.3 we use the closed-form solution to our simple model to illustrate that the slope coefficient at $k = 1$ should be positive, although the magnitude is small when ρ_θ is close to one. This result is consistent with what is observed in the data.

Table 6 reports the results from predictive regressions based on both the actual data and the simulated data at different horizons ($k = 1, 4, 8, \ldots, 20$). Using the posterior mode estimates of model parameters, we simulate a sample of 108 periods (the same sample length

\footnote{We ignore the correlation between these two components because it is negligible as discussed in Section IV.3.}
as the actual data) with only SDF shocks. For each simulated sample, we run the OLS predictive regression. We repeat the simulation 10,000 times and compute the median values of α_1 and R^2 as well as the corresponding 90% probability bounds. As one can see, the 90% probability bounds contain the estimates based on the actual data. Conversely, the 90% confidence interval for α_1 based on the actual data contains the median value of α_1 based on the simulated samples at each horizon k. Overall, the model’s results match the data. More important is the model’s ability to predict the long-horizon house return by the rent-price ratio.

IX. Conclusion

The main contribution of this paper is the formulation of a dynamic general equilibrium model capable of explaining the price-rent dynamics over the business cycle and their predictability on house returns in the long horizon. The model is tractable and fit remarkably well to the U.S. time series of house price, house rent, and other key macroeconomic variables. The large volatility of the price-rent ratio relative to output enables us to quantify the importance of the model’s mechanism that transforms a small and persistent SDF shock into the large price-rent fluctuation. Our estimated model not only matches the key aspects of the business cycle but also delivers a structural interpretation of how the rent-price ratio can predict the house return over the long horizon.

To make the findings and the mechanism transparent, our model abstracts from many other dimensions that merit further study in the future. One such dimension is to extend the model to include mortgage markets for households and intertemporal loans. For instance, De Fiore and Uhlig (2011) embed corporate bonds and bank loans in a tractable DSGE model where financial contracts are optimal. Another dimension for expanding our model is the introduction of monetary and regulatory policies. The recent financial crisis has generated a heated debate on how monetary policy should respond to the boom and bust of housing prices (Galí, 2014, for example). We hope that the mechanism developed in our paper lays the groundwork for extending the model along these and other important dimensions.
Table 1. Posterior distributions of structural parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Representation</th>
<th>Posterior estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>Inverse Frisch</td>
<td>Mode: 1.0229, Low: 0.6145, High: 2.1178</td>
</tr>
<tr>
<td>η</td>
<td>Survival elasticity</td>
<td>Mode: 9.3134, Low: 8.2581, High: 12.899</td>
</tr>
<tr>
<td>δ''/δ'</td>
<td>Capacity utilization</td>
<td>Mode: 4.3031, Low: 1.6745, High: 9.1139</td>
</tr>
<tr>
<td>γ</td>
<td>Habit formation</td>
<td>Mode: 0.1079, Low: 0.0332, High: 0.2724</td>
</tr>
<tr>
<td>Ω</td>
<td>Capital adjustment</td>
<td>Mode: 0.0166, Low: 0.0040, High: 0.0719</td>
</tr>
</tbody>
</table>

Note: “Low” and “High” denote the bounds of the 90% probability interval for each parameter.

Table 2. Posterior distributions of shock parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Representation</th>
<th>Posterior estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_z</td>
<td>Permanent investment tech</td>
<td>Mode: 0.1619, Low: 0.0880, High: 0.2958</td>
</tr>
<tr>
<td>ρ_{ν_z}</td>
<td>Stationary investment tech</td>
<td>Mode: 0.0168, Low: 0.0154, High: 0.6733</td>
</tr>
<tr>
<td>ρ_a</td>
<td>Permanent neutral tech</td>
<td>Mode: 0.9270, Low: 0.1803, High: 0.9496</td>
</tr>
<tr>
<td>ρ_{ν_a}</td>
<td>Stationary neutral tech</td>
<td>Mode: 0.9273, Low: 0.8359, High: 0.9401</td>
</tr>
<tr>
<td>ρ_θ</td>
<td>SDF</td>
<td>Mode: 0.9996, Low: 0.9973, High: 0.9998</td>
</tr>
<tr>
<td>ρ_ξ</td>
<td>Housing demand</td>
<td>Mode: 0.9380, Low: 0.8953, High: 0.9730</td>
</tr>
<tr>
<td>ρ_ψ</td>
<td>Labor supply</td>
<td>Mode: 0.9908, Low: 0.9758, High: 0.9967</td>
</tr>
<tr>
<td>σ_z</td>
<td>Permanent investment tech</td>
<td>Mode: 0.0054, Low: 0.0046, High: 0.0060</td>
</tr>
<tr>
<td>σ_{ν_z}</td>
<td>Stationary investment tech</td>
<td>Mode: 0.0001, Low: 0.0001, High: 0.0018</td>
</tr>
<tr>
<td>σ_a</td>
<td>Permanent neutral tech</td>
<td>Mode: 0.0005, Low: 0.0004, High: 0.0040</td>
</tr>
<tr>
<td>σ_{ν_a}</td>
<td>Stationary neutral tech</td>
<td>Mode: 0.0065, Low: 0.0058, High: 0.0076</td>
</tr>
<tr>
<td>σ_θ</td>
<td>SDF</td>
<td>Mode: 0.0002, Low: 0.0001, High: 0.0002</td>
</tr>
<tr>
<td>σ_ξ</td>
<td>Housing demand</td>
<td>Mode: 0.0069, Low: 0.0063, High: 0.0079</td>
</tr>
<tr>
<td>σ_ψ</td>
<td>Labor supply</td>
<td>Mode: 0.0104, Low: 0.0083, High: 0.0170</td>
</tr>
</tbody>
</table>

Note: “Low” and “High” denote the bounds of the 90% probability interval for each parameter.
Table 3. Variance decompositions (%) of key financial and real variables

<table>
<thead>
<tr>
<th>Horizon (quarter)</th>
<th>Shock to</th>
<th>Housing</th>
<th>Labor</th>
<th>Technology</th>
<th>SDF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Price-rent ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.89</td>
<td>0.00</td>
<td>0.00</td>
<td>94.11</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.97</td>
<td>0.00</td>
<td>0.00</td>
<td>95.03</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.02</td>
<td>0.00</td>
<td>0.00</td>
<td>95.98</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2.78</td>
<td>0.00</td>
<td>0.00</td>
<td>97.22</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2.05</td>
<td>0.00</td>
<td>0.00</td>
<td>97.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>59.52</td>
<td>10.69</td>
<td>16.56</td>
<td>3.68</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53.20</td>
<td>12.08</td>
<td>17.89</td>
<td>5.21</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>43.71</td>
<td>14.00</td>
<td>20.35</td>
<td>8.23</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>29.07</td>
<td>16.20</td>
<td>20.58</td>
<td>13.99</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>19.85</td>
<td>16.62</td>
<td>17.51</td>
<td>18.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td>15.84</td>
<td>64.77</td>
<td>19.19</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>16.96</td>
<td>59.68</td>
<td>22.04</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
<td>17.99</td>
<td>52.47</td>
<td>25.32</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.00</td>
<td>18.48</td>
<td>38.82</td>
<td>29.69</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.00</td>
<td>17.68</td>
<td>28.36</td>
<td>31.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutoff productivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.12</td>
<td>2.52</td>
<td>96.19</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.14</td>
<td>2.18</td>
<td>96.67</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
<td>0.11</td>
<td>1.53</td>
<td>97.64</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.00</td>
<td>0.08</td>
<td>0.86</td>
<td>98.66</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.00</td>
<td>0.06</td>
<td>0.57</td>
<td>99.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td>80.50</td>
<td>11.82</td>
<td>2.52</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>82.19</td>
<td>10.40</td>
<td>2.75</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
<td>85.85</td>
<td>7.96</td>
<td>2.61</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.00</td>
<td>90.20</td>
<td>5.13</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.00</td>
<td>92.24</td>
<td>3.84</td>
<td>1.99</td>
<td></td>
</tr>
</tbody>
</table>

Note: Variance decompositions attributed to shocks to housing demand, labor supply, stationary aggregate technology, and SDF.
Table 4. Key data volatilities explained by SDF shocks (%)

<table>
<thead>
<tr>
<th>Description</th>
<th>Volatility</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Median</td>
<td>Low</td>
</tr>
<tr>
<td>Output</td>
<td>std $\Delta \log Y_t$</td>
<td>0.429</td>
<td>0.381</td>
</tr>
<tr>
<td>Price-rent</td>
<td>std $\Delta \log (p_t/r_{ht})$</td>
<td>2.623</td>
<td>2.333</td>
</tr>
<tr>
<td>SDF shock</td>
<td>std $\Delta \log \theta_t$</td>
<td>0.016</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Note: “SDF” stands for the stochastic discount factor and “Low” and “High” denote the bounds of the 90% probability interval of the simulated data from the model.

Table 5. Contributions (%) to the price-rent dynamics in response to an SDF shock at different horizons

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Contributions from SDF premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.48 66.52</td>
</tr>
<tr>
<td>4</td>
<td>32.46 67.54</td>
</tr>
<tr>
<td>8</td>
<td>31.09 68.91</td>
</tr>
<tr>
<td>16</td>
<td>28.34 71.66</td>
</tr>
<tr>
<td>24</td>
<td>25.56 74.44</td>
</tr>
<tr>
<td>40</td>
<td>19.97 80.03</td>
</tr>
</tbody>
</table>

Note: “SDF” represents the stochastic discount factor that contributes to the price-rent dynamics in response to an SDF shock and “premium” represents the effect on the liquidity premium of endogenous amplification mechanism.
Table 6. Prediction of house returns by the ratio of rent to price at different horizons

Predictive regression: \(r_{t\rightarrow t+k} = \alpha_0 + \alpha_1 \log \frac{r_{ht}}{p_t} + \varepsilon_{t,k} \)

<table>
<thead>
<tr>
<th>Horizon (k)</th>
<th>Data ((\alpha_1))</th>
<th>Model ((\alpha_1))</th>
<th>Data ((R^2))</th>
<th>Model ((R^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Low</td>
<td>High</td>
<td>Median</td>
</tr>
<tr>
<td>1</td>
<td>0.016(-0.009, 0.042)</td>
<td>0.040</td>
<td>-0.002</td>
<td>0.130</td>
</tr>
<tr>
<td>4</td>
<td>0.120(0.045, 0.195)</td>
<td>0.159</td>
<td>-0.008</td>
<td>0.473</td>
</tr>
<tr>
<td>8</td>
<td>0.338(0.215, 0.461)</td>
<td>0.317</td>
<td>-0.012</td>
<td>0.815</td>
</tr>
<tr>
<td>20</td>
<td>1.031(0.850, 1.213)</td>
<td>0.779</td>
<td>-0.050</td>
<td>1.425</td>
</tr>
</tbody>
</table>

Note: We report the OLS estimates of \(\alpha_1 \) and \(R^2 \). The numbers in parentheses in the column headed by “Data (\(\alpha_1 \))” represent the 90% confidence interval of the estimated coefficient. The house return from \(t \) to \(t+k \) is defined as \(r_{t\rightarrow t+k} = \log \frac{p_{t+k}}{p_t} \). “Low” and “High” denote the bounds of the 90% probability interval of the simulated data from the model.
Figure 1. The time series of the log price-rent ratio in the U.S. housing sector (the left scale) and the time series of log output in the U.S. economy (the right scale).
Figure 2. Impact of a positive SDF shock: An illustration of the key economic mechanism. The production line represents equation (19) and the labor-market line represents equation (23). The asset-pricing and liquidity-constraint curves plot equations (17) and (24).
Figure 3. Calibrated impulse responses to a positive SDF shock for the simple general equilibrium model without capital, where p is the house price, b is the liquidity premium, r_h is the house rent, a^* is the cutoff productivity level, Y is aggregate output, and N is labor hours.
Figure 4. Log values of CoreLogic national house price index and flow-of-funds data national commercial real-estate price index.
Figure 5. Log values of house rent index, retail-property rent index, and overall commercial-property rent price index.
Figure 6. Impulse responses of key financial and real variables to a one-standard-deviation housing demand shock. The asterisk lines represent the estimated results and the dashed lines demarcate the 90% error bands.
Figure 7. Impulse responses of key financial and real variables to a one-standard-deviation labor supply shock. The asterisk lines represent the estimated results and the dashed lines demarcate the 90% error bands.
Figure 8. Impulse responses of key financial and real variables to a one-standard-deviation stationary technology shock. The asterisk lines represent the estimated results and the dashed lines demarcate the 90% error bands.
Figure 9. Impulse responses of key financial and real variables to a one-standard-deviation SDF shock. The asterisk lines represent the estimated results and the dashed lines demarcate the 90% error bands.
Figure 10. Impulse responses of output, house price, and house rent from an estimated BVAR model with Sims and Zha (1998)’s prior and with four lags. All the variables are expressed in log level. The shocks are orthogonalized with output ordered first, the house price second, and the house rent third. The solid lines represent the estimated results and the dashed lines demarcate the 90% error bands.
Figure 11. An illustration of the propagation mechanism that transmits a positive technology shock. The asset-pricing curve represents equation (17) and the liquidity-constraint curve represents equation (24).
Figure 12. An illustration of the propagation mechanism that transmits a positive SDF shock. The production and labor-market curves represent equations (48) and (51). The asset-pricing and liquidity-constraint curves represent equations (17) and (24).
Appendix A. Proofs of Propositions 1-3

We conjecture that the value function takes the form \(V_t(h_t^i, a_t^i) = v_t(a_t^i) h_t^i \), where \(v_t(a_t^i) \) satisfies (13). Using the Bellman equation (12), we can rewrite the incentive constraint (9) as follows

\[
d_i^t + \beta E_t \frac{\Lambda_{t+1}}{\Lambda_t} V_{t+1}(h_{t+1}^i, a_{t+1}^i) \geq a_i^t A_t n_t^i + (r_{ht} + p_h^a) h_t^i.
\]

Given the conjectured value function and equations (8), (10), and (13), we can rewrite this constraint as

\[
a_i^t A_t n_t^i - w_t n_t^i + r_{ht} h_t^i + p_h^a \geq a_i^t A_t n_t^i + (r_{ht} + p_h^a) h_t^i.
\]

Simplifying the proceeding inequality yields the constraint (14).

Substituting the conjectured value function into the Bellman equation (12) yields

\[
v_t(a_t^i) h_t^i = \max_{n_t^i, h_{t+1}^i} (a_i^t A_t - w_t) n_t^i + r_{ht} h_t^i + p_h^a h_{t+1}^i.
\]

Simplifying yields

\[
v_t(a_t^i) h_t^i = \max_{n_t^i} (a_i^t A_t - w_t) n_t^i + r_{ht} h_t^i + p_h^a h_{t+1}^i.
\]

When \(a_t^i \geq a^*_t = w_t/A_t \), the credit constraint (14) binds. Thus the preceding equation implies that

\[
v_t(a_t^i) = \begin{cases} (a_i^t A_t - w_t) \frac{w_t}{w_t} + r_{ht} + p_h^a & \text{if } a_t^i \geq a_t^* \\ r_{ht} + p_h^a & \text{otherwise} \end{cases}.
\] (A1)

We also obtain the optimal labor choice in (15). Finally, we substitute (A1) into (13) and obtain (16). Using (11) and \(b_t = p_t - p_h^a \), we obtain (17).

By equations (5), (16), and (17), we can derive that

\[
\frac{\pi_t}{\Lambda_t} = \beta E_t b_{t+1} \frac{\Lambda_{t+1}}{\Lambda_t} \int_{a_{t+1}^*}^{a_t^*} \frac{a - a_{t+1}^*}{a_{t+1}^* - a_{t+1}^*} f(a) da.
\]

If \(b_t > 0 \) for all \(t \), then \(\pi_t > 0 \). It follows from the complementary slackness condition \(\pi_t h_{ot+1} = 0 \) that the household will not possess housing units, i.e., \(h_{ot+1} = 0 \) whenever \(b_t > 0 \) for all \(t \).

Appendix B. Equilibrium System for the Medium-Scale Model

The representative household chooses consumption, labor supply, investment, capital, and capacity utilization in order to maximize (38). The first-order conditions are given by

\[
\Lambda_t = \frac{\Theta_t}{C_t - \gamma C_{t-1}} - \frac{\Theta_{t+1}}{C_{t+1} - \gamma C_t},
\] (A2)

\[
r_{ht} = \frac{\Theta_t \xi_t}{\Lambda_t},
\] (A3)

\[
\Lambda_t w_t = \Theta_t \psi_t N_t^\nu,
\] (A4)

\[
\Lambda_t w_t = \Theta_t \psi_t N_t^\nu,
\] (A4)
\[
\frac{1}{Z_t} = Q_{kt} \left[1 - \frac{\Omega}{2} \left(\frac{I_t}{I_{t-1}} - \bar{g}_t \right)^2 - \Omega \left(\frac{I_t}{I_{t-1}} - \bar{g}_t \right) \frac{I_t}{I_{t-1}} \right] + \beta E_t \frac{\Lambda_{t+1}}{\Lambda_t} Q_{kt+1} \Omega \left(\frac{I_{t+1}}{I_t} - \bar{g}_t \right) \frac{I_{t+1}^2}{I_t^2}, \tag{A5}
\]

\[
Q_{kt} = \beta E_t \frac{\Lambda_{t+1}}{\Lambda_t} (u_t + r_{kt+1} + (1 - \delta) Q_{kt+1}), \tag{A6}
\]

\[
r_{kt} = \delta'(u_t) Q_{kt}, \tag{A7}
\]

\[
\frac{1}{R_{ft}} = \beta E_t \frac{\Lambda_{t+1}}{\Lambda_t}. \tag{A8}
\]

These equations admit the usual interpretations. Note that we have imposed the market clearing condition \(H_t = 1\) in (A3).

The first-order conditions for the intermediate goods producers are given by

\[
\alpha P_{Xt}(j) A_t K_t(j)^{\alpha-1} N_t(j)^{1-\alpha} = r_{kt}, \tag{A9}
\]

and

\[
(1 - \alpha) P_{Xt}(j) A_t K_t(j)^\alpha N_t(j)^{-\alpha} = w_t. \tag{A10}
\]

Now we compute that

\[
E_t \frac{\beta \Lambda_{t+1}}{\Lambda_t} V_{t+1}^a (h_t^i) = E_t \frac{\beta \Lambda_{t+1}}{\Lambda_t} r_{ht+1} h_t^i + E_t \frac{\beta \Lambda_{t+2}}{\Lambda_t} r_{ht+2} h_t^i + ... = p_t^a h_t^i,
\]

where \(p_t^a\) satisfies the recursive equation

\[
p_t^a = \beta E_t \frac{\Lambda_{t+1}}{\Lambda_t} \left[r_{ht+1} + p_{t+1}^a \right]. \tag{A11}
\]

We write firm \(i\)'s decision problem by dynamic programming

\[
V_t(h_t^i, a_t^i) = \max_{x_t^i(j), n_t^i+1 \geq 0} d_t^i + \beta E_t \frac{\Lambda_{t+1}}{\Lambda_t} V_{t+1}(h_{t+1}^i, a_{t+1}^i), \tag{A12}
\]

subject to (45) and (46).

To solve the firm's decision problem, we first derive the unit cost of production. Define the total cost of producing \(y_{it}\) as

\[
\Phi(y_t^i, a_t^i) \equiv \min_{x_t^i(j)} \int P_{Xt}(j) x_t^i(j) dj,
\]

subject to \(a_t^i \exp \left(\int \log x_t^i(j) dj \right) \geq y_t^i\). Cost-minimization implies that

\[
\Phi(y_t^i, a_t^i) = y_t^i \frac{a_t^*_t}{a_t^i}, \tag{A14}
\]

where the term \(a_t^*_t\) is given by

\[
a_t^*_t \equiv \exp \left[\int \log P_{Xt}(j) dj \right], \tag{A15}
\]
and the demand for each $x^j_i(t)$ satisfies
\[P_{Xt}(j)x^j_i(t) = a^*_t \exp \left(\int \log x^j_i(j) dj \right). \] (A16)

Using the cost function in (A14), we can rewrite firm i’s budget constraint as
\[d^i_t + p_t(h^i_{t+1} - h^i_t) \leq y^i_t - y^i_t \frac{a^*_t}{a^i_t} + r_h h^i_t. \] (A17)

Conjecture that
\[V_t(h^i_t, a^i_t) = v_t(a^i_t) h^i_t, \]
where $v_t(a^i_t)$ satisfies
\[\beta E_t \Lambda_{t+1} \Lambda_t v_{t+1}(a^i_{t+1}) = p_t. \] (A18)

We can also rewrite the credit constraint (46) as
\[y^i_t \frac{a^*_t}{a^i_t} \leq b_t h^i_t, \] (A19)
where $b_t = p_t - p^2_t$ represents the liquidity premium.

Substituting the preceding conjecture and (A17) into the Bellman equation (A12), we obtain
\[v_t(a^i_t) h^i_t = \max_{y^i_t} y^i_t \left(1 - \frac{a^*_t}{a^i_t} \right) + r_h h^i_t - p_t(h^i_{t+1} - h^i_t) + p_t h^i_{t+1}, \]
subject to (A19). We then obtain the optimal output choice
\[y^i_t = \begin{cases} \frac{a^i_t}{a^*_t} b_t h^i_t & \text{if } a^i_t \geq a^*_t \\ 0 & \text{otherwise} \end{cases}. \] (A20)

Substituting this decision rule back into the Bellman equation and matching coefficients, we obtain
\[v_t(a^i_t) = \begin{cases} \left(\frac{a^i_t}{a^*_t} - 1 \right) b_t + r_h + p_t & \text{if } a^i_t \geq a^*_t \\ r_h + p_t & \text{otherwise} \end{cases}. \]

Substituting this expression into (A18) we obtain
\[p_t = \beta E_t \Lambda_{t+1} \Lambda_t \left[r_{ht+1} + p_{t+1} + b_{t+1} \int_{a^*_t}^{a^i_{t+1}} \frac{a - a^*_t}{a^i_{t+1}} f(a) da \right]. \] (A21)

By (A11) and (A21),
\[b_t = \beta E_t \Lambda_{t+1} \Lambda_t b_{t+1} \left[1 + \int_{a^*_t}^{a^i_{t+1}} \frac{a - a^*_t}{a^i_{t+1}} f(a) da \right]. \] (A22)

The usual transversality conditions hold.

Equation (A15) implies
\[a^*_t = P_{Xt}. \] (A23)
We hence have
\[\alpha P_{Xt} \frac{X_t}{u_k K_t} = r_{kt}, \]
\[(1 - \alpha) P_{Xt} \frac{X_t}{N_t} = w_t, \]
and the resource constraint:
\[C_t + \frac{I_t}{Z_t} = Y_t. \]

By the market-clearing conditions and (A20), aggregate output is given by
\[Y_t = \int y^i_t di = \int a_t^* \frac{a_t^i}{a_t^*} b_t h^i_t di = \frac{b_t}{a_t^*} \int a^*_t af(a) da. \]
(A27)

By the market-clearing conditions, (44), (A16), and (46), the total production cost is given by
\[P_{Xt} X_t = \int P_{Xt} x^j_t (j) dj = \int a_t^* \frac{a_t^i}{a_t^*} y^i_t di = b_t [1 - F(a_t^*)]. \]
(A28)

Using the fact that \(P_{Xt} = a_t^* \) and \(X_t = A_t (u_t K_t)^\alpha N_t^{1-\alpha} \), we can derive that
\[b_t = \frac{a_t^* A_t (u_t K_t)^\alpha N_t^{1-\alpha}}{1 - F(a_t^*)}. \]
(A29)

Using this equation, we can rewrite aggregate output in (A27) as
\[Y_t = A_t (u_t K_t)^\alpha N_t^{1-\alpha} \int a^*_t af(a) da \frac{1}{1 - F(a_t^*)}, \]
(A30)

where the last expectation is taken with respect to the density \(f \) and gives the endogenously determined TFP.

By (A24) and (A25),
\[r_{kt} u_t K_t = \alpha A_t a_t^* (u_t K_t)^\alpha N_t^{1-\alpha} = \frac{\alpha Y_t}{1 - F(a_t^*)} \int a^*_t af(a) da, \]
(A31)

and
\[w_t N_t = (1 - \alpha) A_t a_t^* (u_t K_t)^\alpha N_t^{1-\alpha} = \frac{(1 - \alpha) Y_t}{1 - F(a_t^*)} \int a^*_t af(a) da. \]
(A32)

Define
\[\mu_t + 1 = \frac{1}{1 - F(a_t^*)} \int a^*_t af(a) da > 1. \]

A competitive equilibrium consists of 15 stochastic processes for \(\{K_t\}, \{A_t\}, \{N_t\}, \{I_t\}, \{Q_kt\}, \{u_t\}, \{p_t\}, \{b_t\}, \{C_t\}, \{a_t^*\}, \{Y_t\}, \{r_{kt}\}, \{r_{ht}\}, \{R_{ft}\}, \) and \(\{w_t\} \) such that a system of 15 equations hold: (42), (A2)-(A8), (A21), (A22), (A26), (A27), (A30), (A31), and (A32).

Note that equation (A15) is implied by equations (A30), (A31), and (A32). The usual transversality conditions also hold.
APPENDIX C. STATIONARY EQUILIBRIUM

We make the following transformations of the variables:

\[
\begin{align*}
\tilde{C}_t &\equiv \frac{C_t}{\Gamma_t}, \quad \tilde{I}_t \equiv \frac{I_t}{Z_t \Gamma_t}, \quad \tilde{Y}_t \equiv \frac{Y_t}{\Gamma_t}, \quad \tilde{K}_t \equiv \frac{K_t}{\Gamma_{t-1} Z_{t-1}}, \\
\tilde{w}_t &\equiv \frac{w_t}{\Gamma_t}, \quad \tilde{r}_{ht} \equiv \frac{r_{ht}}{\Gamma_t}, \quad \tilde{p}_t \equiv \frac{p_t}{\Gamma_t}, \quad \tilde{b}_t \equiv \frac{b_t}{\Gamma_t}, \\
\tilde{r}_{kt} &\equiv \frac{r_{kt}}{Z_t}, \quad \tilde{Q}_{kt} \equiv \frac{Q_{kt}}{Z_t}, \quad \tilde{\Lambda}_t \equiv \frac{\Lambda_t}{\Theta_t} \\
\end{align*}
\]

where \(\Gamma_t = Z_t^{\frac{\alpha}{1-\alpha}} A_t^{\frac{1}{1-\alpha}}\). The other variables are stationary and there is no need to scale them.

Let \(G_{zt} = \frac{Z_t}{Z_{t-1}}\) and \(G_{at} = \frac{A_t}{A_{t-1}}\). Then

\[
\begin{align*}
\log G_{zt} &= \log g_{zt} + \log g_{\nu z, t}, \\
\log G_{at} &= \log g_{at} + \log g_{\nu a, t},
\end{align*}
\]

where

\[
\begin{align*}
\log g_{\nu z, t} &= \log \nu_{z,t} - \log \nu_{z,t-1}, \\
\log g_{\nu a, t} &= \log \nu_{a,t} - \log \nu_{a,t-1}.
\end{align*}
\]

Denoting the gross growth rate of \(\Gamma_t\) by \(g_{\gamma t} \equiv \Gamma_t/\Gamma_{t-1}\), we have

\[
\log g_{\gamma t} = \frac{\alpha}{1-\alpha} \log G_{zt} + \frac{1}{1-\alpha} \log G_{at}.
\]

Denoting the non-stochastic steady-state of \(g_{\gamma t}\) by \(g_{\gamma}\), we have

\[
\log g_{\gamma} = \frac{\alpha}{1-\alpha} \log g_{z} + \frac{1}{1-\alpha} \log g_{a}.
\] (A33)

On the nonstochastic balanced growth path, investment and capital grow at the rate of \(g_t \equiv g_{\gamma} g_{z}\); consumption, output, wages, and the liquidity premium grow at the rate of \(g_{\gamma}\); and the house rent, the rental rate of capital, Tobin’s marginal \(Q\), and the relative price of investment goods decrease at the rate \(g_{z}\). We now display the equilibrium system for the stationary variables.

(1) Marginal utility of consumption,

\[
\tilde{\Lambda}_t = \frac{1}{\tilde{C}_t - \gamma \tilde{C}_{t-1}/g_{\gamma t}} - \beta \gamma E_t \theta_{t+1} \frac{1}{\tilde{C}_{t+1} g_{\gamma t+1} - \gamma \tilde{C}_t}.
\] (A34)

(2) Labor supply,

\[
\tilde{\Lambda}_t \tilde{w}_t = \psi_t \nu^\nu_t.
\] (A35)

(3) Rent of house,

\[
\tilde{r}_{ht} = \frac{\xi_t}{\tilde{\Lambda}_t}.
\] (A36)
(4) Investment,

\[1 = \tilde{Q}_k t \left[1 - \Omega \left(\frac{\tilde{I}_t - \tilde{G}_z g_{zt} - g_t}{\tilde{I} t - 1} \right)^2 - \Omega \left(\frac{\tilde{I}_t - \tilde{G}_z g_{zt} - g_t}{\tilde{I} t - 1} \right) \tilde{I} t \tilde{G}_z g_{zt} - g_t \right] \]

\[+ \beta E_t \theta t + 1 \frac{\tilde{\Lambda}_t + 1}{\tilde{\Lambda}_t} \tilde{Q}_k + 1 \Omega \left(\frac{\tilde{I}_t + 1}{\tilde{I} t + 1} g_{zt + 1} - g_t \right) \tilde{I} t + 1 \tilde{G}_z g_{zt + 1} \tilde{G}_z g_{zt + 1}. \]

(A37)

(5) Marginal Tobin’s \(Q_k \),

\[\tilde{Q}_k t = \beta E_t \theta t + 1 \tilde{\Lambda}_t + 1 \frac{1}{\tilde{\Lambda}_t} \frac{g_{zt + 1} g_{zt + 1}}{\tilde{I} t + 1} \left[u_{t + 1} \tilde{r}_{k t + 1} + (1 - \delta(u_{t + 1})) \tilde{Q}_{k t + 1} \right]. \]

(A38)

(6) Capital utilization,

\[\tilde{r}_{k t} = \delta'(u_t) \tilde{Q}_k t. \]

(A39)

(7) Liquidity premium,

\[\tilde{b}_t = \beta E_t \frac{\tilde{\Lambda}_t + 1}{\tilde{\Lambda}_t} \tilde{b}_{t + 1} \left[1 + \int_{a_{t + 1}^*} a_{t + 1}^* \left(\frac{a_{t + 1}^*}{a_{t + 1}^*} - 1 \right) f(a) d a \right]. \]

(A40)

(8) House price,

\[\tilde{p}_t = \beta E_t \frac{\tilde{\Lambda}_t + 1}{\tilde{\Lambda}_t} \tilde{p}_{h t + 1} + \tilde{b}_{t + 1} \int_{a_{t + 1}^*} a_{t + 1}^* \left(\frac{a_{t + 1}^*}{a_{t + 1}^*} - 1 \right) f(a) d a. \]

(A41)

(9) Rental rate of capital,

\[\tilde{r}_{k t} u_t \tilde{K}_t = \frac{\alpha \tilde{G}_z g_{zt} \tilde{Y}_t}{1 - F(a_t^*) \int a_t^* f(a) d a}. \]

(A42)

(10) Labor demand,

\[\tilde{w}_t N_t = \frac{(1 - \alpha) \tilde{Y}_t}{1 - F(a_t^*) \int a_t^* f(a) d a}. \]

(A43)

(11) Aggregate output,

\[\tilde{Y}_t = \frac{1}{(G_{zt} G_{at})^{\frac{\alpha}{1 - \alpha}}} \left(u_t \tilde{K}_t \right)^\alpha N_t^{1 - \alpha} \frac{\int a_t^* a f(a) d a}{1 - F(a_t^*)}. \]

(A44)

(12) Liquidity constraint,

\[\tilde{b}_t \int a_t^* f(a) d a = \tilde{Y}_t. \]

(A45)

(13) Aggregate capital accumulation,

\[\tilde{K}_{t + 1} = (1 - \delta(u_t)) \frac{\tilde{K}_t}{g_{zt} g_{zt}} + \left[1 - \frac{\Omega}{2} \left(\frac{\tilde{I}_t}{\tilde{I} t - 1} g_{zt} g_{zt} - g_t \right)^2 \right] \tilde{I}_t. \]

(A46)

(14) Resource constraint,

\[\tilde{C}_t + \tilde{I}_t = \tilde{Y}_t. \]

(A47)
(15) Risk-free rate,
\begin{equation}
1 = \beta R_{ft} E_t \left[\frac{\hat{\Lambda}_{t+1}\theta_{t+1} + 1}{\hat{\Lambda}_t g_{\gamma,t+1}} \right].
\end{equation}

\section*{Appendix D. Log-Linearized System}

We log-linearize the stationary model given in the preceding appendix around the deterministic steady state.

(1) Marginal utility of consumption,
\begin{equation}
\hat{\Lambda}_t (g_{\gamma} - \beta \gamma)(g_{\gamma} - \gamma) = \left[-g_{\gamma} \hat{C}_t + \gamma g_{\gamma} \left(\hat{C}_{t-1} + \hat{g}_{zt} \right) \right] - \beta \gamma E_t \left[-g_{\gamma} \left(\hat{C}_{t+1} + \hat{g}_{\gamma,t+1} \right) + \gamma \hat{C}_t + \theta_{t+1}(g_{\gamma} - \gamma) \right].
\end{equation}

(2) Labor supply,
\begin{equation}
\hat{\Lambda}_t + \hat{w}_t = \hat{\psi}_t + \nu \hat{N}_t.
\end{equation}

(3) House rent,
\begin{equation}
\hat{r}_{ht} = -\hat{\Lambda}_t + \hat{\xi}_t.
\end{equation}

(4) Investment,
\begin{equation}
0 = \hat{Q}_{kt} - \Omega (g_{\gamma}g_{\gamma})^2 \left[\hat{I}_t - \hat{I}_{t-1} + \hat{g}_{zt} + \hat{g}_{vzt} + \hat{g}_{\gamma t} \right] + \beta \Omega (g_{\gamma}g_{\gamma})^2 E_t \left(\hat{I}_{t+1} - \hat{I}_t + \hat{g}_{zt+1} + \hat{g}_{\gamma,t+1} + \hat{g}_{vzt+1} \right).
\end{equation}

(5) Marginal Tobin’s Q_k,
\begin{equation}
\hat{Q}_{kt} + \hat{\Lambda}_t = E_t \left[\hat{\theta}_{t+1} + \hat{\Lambda}_{t+1} - \hat{g}_{\gamma,t+1} - \hat{g}_{zt+1} - \hat{g}_{vzt+1} \right] + (1 - \beta(1 - \delta)) E_t(\hat{u}_{t+1} + \hat{r}_{kt+1}) + \beta(1 - \delta) E_t \left[\hat{Q}_{kt+1} - \frac{\delta'(1)}{1 - \delta} \hat{u}_{t+1} \right].
\end{equation}

(6) Capital utilization,
\begin{equation}
\hat{r}_{kt} = \frac{\delta''(1)}{\delta'(1)} \hat{u}_t + \hat{Q}_{kt}.
\end{equation}

(7) Liquidity premium,
\begin{equation}
\hat{b}_t + \hat{\Lambda}_t = E_t(\hat{\theta}_{t+1} + \hat{\Lambda}_{t+1} + \hat{b}_{t+1}) - [1 - \beta] \frac{1 + \mu}{\mu} E_t \hat{a}_{t+1}^*.\end{equation}
(8) House price,
\[
\dot{p}_t + \dot{\Lambda}_t = E_t \left(\dot{\theta}_{t+1} + \dot{\Lambda}_{t+1} \right) + \frac{\beta(\bar{r}_h/\bar{Y})}{\bar{p}/\bar{Y}} E_t \dot{r}_{ht+1} + \beta E_t \dot{p}_{t+1} + \beta \left(1 - \beta \right) \frac{(\bar{b}/\bar{Y})}{\bar{p}/\bar{Y}} E_t \left[\dot{b}_{t+1} - \frac{1 + \mu}{\mu} \dot{a}_{t+1}^* \right]. \tag{A56}
\]

(9) Rental rate of capital,
\[
\dot{r}_{kt} + \dot{u}_t + \dot{K}_t = \dot{Y}_t + \dot{g}_{zt} + \dot{g}_{\gamma t} + \dot{g}_{vzt} + \left[1 - \frac{\eta \mu}{1 + \mu} \right] \dot{a}_t^*. \tag{A57}
\]

(10) Labor demand,
\[
\dot{w}_t + \dot{N}_t = \dot{Y}_t + \left(1 - \frac{\eta \mu}{1 + \mu} \right) \dot{a}_t^*. \tag{A58}
\]

(11) Aggregate output,
\[
\dot{Y}_t = \alpha (\dot{u}_t + \dot{K}_t) + (1 - \alpha) \dot{N}_t + \frac{\eta \mu}{1 + \mu} \dot{a}_t^* - \frac{\alpha}{1 - \alpha} \left(\dot{g}_{zt} + \dot{g}_{vzt} + \dot{g}_{at} + \dot{g}_{vatt} \right). \tag{A59}
\]

(12) Liquidity constraint,
\[
\dot{b}_t - \frac{1 + \eta + \mu}{1 + \mu} \dot{a}_t^* = \dot{Y}_t. \tag{A60}
\]

(13) Aggregate capital accumulation,
\[
\dot{K}_{t+1} = \left(\frac{1 - \delta}{g_z g_\gamma} \right) \dot{K}_t + \left(1 - \frac{1 - \delta}{g_z g_\gamma} \right) \dot{I}_t - \frac{\delta'(1)}{g_z g_\gamma} \dot{u}_t - (1 - \delta) \left[\frac{\dot{g}_{zt} + \dot{g}_{vzt}}{g_z g_\gamma} + \frac{\dot{g}_{\gamma t}}{g_z g_\gamma} \right]. \tag{A61}
\]

(14) Resource constraint,
\[
\frac{\tilde{C}}{\tilde{Y}} \dot{C}_t + \frac{\tilde{I}}{\tilde{Y}} \dot{I}_t = \dot{Y}_t. \tag{A62}
\]

(15) Risk-free rate,
\[
\dot{\Lambda}_t = \dot{R}_{ft} + E_t (\dot{\Lambda}_{t+1} + \dot{\theta}_{t+1} - \dot{g}_{\gamma t+1}). \tag{A63}
\]

We have 7 shocks.

(1) Permanent IST shock,
\[
\dot{g}_{zt} = \rho_z \dot{g}_{zt-1} + \sigma_z \varepsilon_{zt}. \tag{A64}
\]

(2) Temporary IST shock,
\[
\dot{v}_{zt} = \rho_{vz} \dot{v}_{zt-1} + \sigma_{vz} \varepsilon_{vzt}. \tag{A65}
\]

(3) Permanent technology shock,
\[
\dot{g}_{at} = \rho_a \dot{g}_{at-1} + \sigma_a \varepsilon_{at}. \tag{A66}
\]

(4) Temporary technology shock,
\[
\dot{v}_{at} = \rho_{va} \dot{v}_{at-1} + \sigma_{va} \varepsilon_{vat}. \tag{A67}
\]
(5) SDF shock,
\[\hat{\theta}_t = \rho_\theta \hat{\theta}_{t-1} + \sigma_\theta \varepsilon_\theta. \] (A68)

(6) Housing demand shock,
\[\hat{\xi}_t = \rho_\xi \hat{\xi}_{t-1} + \sigma_\xi \varepsilon_\xi. \] (A69)

(7) Labor supply shock,
\[\hat{\psi}_t = \rho_\psi \hat{\psi}_{t-1} + \sigma_\psi \varepsilon_\psi. \]

Appendix E. Data

All the data used in this paper was constructed by Patrick Higgins at the Federal Reserve Bank of Atlanta, some of which are collected directly from the Haver Analytics Database (Haver for short). In this section, we describe how the data was constructed in detail.

The model estimation is based on six U.S. aggregate time series: the real price of house \(p_t^{\text{Data}} \), the real rental price of house \(r_{ht}^{\text{Data}} \), the quality-adjusted relative price of investment \((1/Z_t)^{\text{Data}} \), real per capita consumption \(C_t^{\text{Data}} \), real per capita investment \(I_t^{\text{Data}} \), and per capita total hours \(H_t^{\text{Data}} \). These series are constructed as follows:

- \(p_t^{\text{Data}} = \frac{\text{LiqCoreLogic87}}{\text{PriceNonDurPlusServExHous}} \).
- \(r_{ht}^{\text{Data}} = \frac{\text{PCERentOERPriceIndex}}{\text{PriceNonDurPlusServExHous}} \).
- \((1/Z_t)^{\text{Data}} = \frac{\text{GordonPriceCDplusES}}{\text{PriceNonDurPlusServExHous}} \).
- \(C_t^{\text{Data}} = \frac{(\text{NomConsNHSplusND})}{\text{PriceNonDurPlusServExHous}} \).
- \(I_t^{\text{Data}} = \frac{(\text{CD@USECON} + \text{FNE@USECON})}{\text{PriceNonDurPlusServExHous}} \).
- \(H_t^{\text{Data}} = \frac{\text{TotalHours}}{\text{POPSMOOTH@USECON}} \).

Sources for the constructed data, along with the Haver keys (all capitalized letters) to the data, are described below.

LiqCoreLogic87: Seasonally adjusted and liquidity-adjusted price index for housing.

To construct this series, we first obtain Haver’s seasonally adjusted CoreLogic home price index \((\text{USLPHPIS@USECON})\) from 1987Q1 to 2013Q4. We then adjust this home price index using the method of Quart and Quigley (1989, 1991) to take into account time-on-market uncertainty. The CoreLogic home price index series provided by the Core Logic Databases is similar to the Case-Shiller home price index but covers far more counties than the Case-Shiller series.

PCERentOERPriceIndex: Rental price index for housing. Constructed by using the Fisher chain-weighted aggregate of PCE owner-occupied rent (OER) \([\text{JCSRD_USNA}]\) and PCE tenant rent \([\text{JCSHT_USNAqtr}]\) price indices. Average of 2009 prices = 100 and seasonally adjusted. Haver Description for PCE OER \([\text{JCSRD_USNA}]\) is “PCE: Imputed Rental of Owner-Occupied Nonfarm Housing Price Index (SA, 2009=100).” The key JCSHT_USNAqtr represents the PCE-based measure of home rental prices.
LIQUIDITY PREMIA, PRICE-RENT DYNAMICS, AND BUSINESS CYCLES

reported by Haver as JCSHT@USNA and described by Haver as “rental of tenant-occupied non-farm housing.” This series is revised over time. Although it is less subject to breaks due to improved methodology, it may continue to have a substantial break in 1977 and a smaller break in 1985 due to “non-response bias” (Crone, Nakamura, and Voith, 2010). Our sample starts in 1987Q1, so this potential problem is avoided.

PriceNonDurPlusServExHous: Consumer price index. Price deflator of non-durable consumption and non-housing services, constructed by Tornqvist aggregation of price deflator of non-durable consumption and non-housing related services (2009=100).

GordonPriceCDplusES: Price of investment goods. Quality-adjusted price index for consumer durable goods, equipment investment, and software investment. This is a weighted index from a number of individual price series within this category. For each individual price series from 1947 to 1983, we use Gordon (1990)’s quality-adjusted price index. Following Cummins and Violante (2002), we estimate an econometric model of Gordon’s price series as a function of time trend and several macroeconomic indicators in the National Income and Product Account (NIPA), including the current and lagged values of the corresponding NIPA price series; the estimated coefficients are then used to extrapolate the quality-adjusted price index for each individual price series for the sample from 1984 to 2008. These constructed price series are annual. We use Denton (1971)’s method to interpolate these annual series at quarterly frequency. We then use the Tornqvist procedure to construct the quality-adjusted price index from the interpolated individual quarterly price series.

NomConsNHSplusND: Nominal personal consumption expenditures. Nominal non-durable goods and non-housing services (SAAR, billion of dollars). It is computed as

\[
CN@USECON + CS@USECON - CSRU@USECON.
\]

POPSMOOTH@USECON: Population. Smoothed civilian noninstitutional population with ages 16 years and over (thousands). This series is smoothed by eliminating breaks in population from 10-year censuses and post-2000 American Community Surveys using the “error of closure” method. This fairly simple method is used by the Census Bureau to get a smooth monthly population series and reduce the unusual influence of drastic demographic changes.\(^{21}\)

CD@USECON: Consumer durable goods expenditures. Nominal personal consumption expenditures: durable goods (SAAR, billion of dollars).

\(^{21}\)The detailed explanation can be found at http://www.census.gov/popest/archives/methodology/intercensal_nat_meth.html.
FNE@USECON: Equipment and software expenditures. Nominal private nonresidential investment: equipment & software (SAAR, billion of dollars).

TotalHours: Total hours in the non-farm business sector.

Appendix F. Estimation Procedure

We apply the Bayesian methodology to the estimation of the log-linearized medium-scale structural model, using our own C/C++ code. The advantage of using our own code instead of using Dynare is the flexibility and accuracy we have for finding the posterior mode. We generate over a half million draws from the prior as a starting point for our optimization routine and select the estimated parameters that give the highest posterior density. The optimization routine is a combination of NPSOL software package and the csminwel routine provided by Christopher A. Sims.

In estimation, we use the log-linearized equilibrium conditions, reported in Appendix D, to form the likelihood function fit to the six quarterly U.S. time series from 1987Q1 to 2013Q4: the house price, the house rent, the quality-adjusted relative price of investment, real per capita consumption, real per capita investment (in consumption units), and per capita hours worked. The data for the estimated sample begins with 1987Q1 for two reasons. First, the Case-Shiller house price time series begins in 1987. Second, the CoreLogic house price time series is similar to the Case–Shiller house price series, but covers far more counties than the Case-Shiller series. The CoreLogic house price series collected for the period before 1987 does not have as much coverage as the series collected for the after-1986 period. The Case-Shiller house price time series exists only for the period after 1986, which we use to verify the quality of the CoreLogic house price series.

We fix the values of certain parameters as an effective way to sharpen the identification of other key parameters in the model. The capital share \(\alpha \) is set at 0.33, consistent with the average capital income share. The growth rate of aggregate investment-specific technology, \(g_z = 1.013 \), is consistent with the average growth rate of the inverse relative price of investment goods. The growth rate of aggregate output, \(g_\gamma = 1.0035 \), is consistent with the average common growth rate of consumption and investment. The interest rate \(R_f \) is set at 1.01. The steady state capacity utilization \(u \) is set at 1. The steady-state labor supply as a fraction of the total time is normalized at \(N = 0.3 \). To solve the steady state, we impose three additional restrictions to be consistent with the data: 1) the capital-output ratio is 1.15 at annual frequency; 2) the investment-capital ratio is 0.2 at annual frequency; and 3) the rental-income-to-output ratio is 0.1.\(^{22}\)

\(^{22}\)Rental income of house is housing rental income of persons with capital consumption adjustment (SAAR, million dollars) from Table 7.4.5 in the National Income and Product Accounts. The output data used for our model is a sum of personal consumption expenditures and private domestic investment. Consumption is the
We estimate five structural parameters as well as all the persistence and volatility parameters that govern exogenous shock processes. The five structural parameters are the inverse Frisch elasticity of labor supply ν, the survival elasticity η, the elasticity of capacity utilization $\delta''(1)/\delta'(1)$, the habit formation γ, and the investment-adjustment cost Ω. The remaining parameters are then obtained from the steady state relationships that satisfy the aforementioned data restrictions. These parameters are: the capital depreciation rate ($\delta = 0.0404$), the subjective discount factor ($\beta = 0.9936$), the parameter related to cutoff productivity ($\mu = 0.1482$), the capacity utilization rate ($\delta'(1) = 0.0635$), the housing demand ($\bar{\xi} = 0.1348$), and the labor disutility ($\bar{\psi} = 8.9843$).

For the estimated parameters, we specify a prior that is agnostic enough to cover a wide range of values that are economically plausible (Table 7). The prior for ν, η, $\delta''(1)/\delta'(1)$, and Ω has a gamma distribution with the shape hyperparameter $a = 1$ and the rate hyperparameter $b = 0.5$. These hyperparameters allow a positive probability density at the zero value and the implied 90% prior probability bounds are from 0.1 to 6. The prior for γ has a beta distribution with the hyperparameters taking the values of 1 and 2. This particular specification allows a positive probability of no habit formation and at the same time permits a wide range of values considered in the literature (Boldrin, Christiano, and Fisher, 2001).

The prior for the persistence parameters of exogenous shock processes follows the beta distribution with the 90% probability interval between 0.026 and 0.776. The prior for the standard deviations of shock processes follows the inverse gamma distribution with the 90% probability interval between 0.0001 and 2. All these prior specifications are far more diffuse than those used in the literature.
Table 7. Prior distributions of structural and shock parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution</th>
<th>a</th>
<th>b</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>Gamma(a,b)</td>
<td>1.0</td>
<td>3.0</td>
<td>0.017</td>
<td>1.000</td>
</tr>
<tr>
<td>η</td>
<td>Gamma(a,b)</td>
<td>1.0</td>
<td>0.5</td>
<td>0.100</td>
<td>6.000</td>
</tr>
<tr>
<td>δ''/δ'</td>
<td>Gamma(a,b)</td>
<td>1.0</td>
<td>0.5</td>
<td>0.100</td>
<td>6.000</td>
</tr>
<tr>
<td>γ</td>
<td>Beta(a,b)</td>
<td>1.0</td>
<td>2.0</td>
<td>0.026</td>
<td>0.776</td>
</tr>
<tr>
<td>Ω</td>
<td>Gamma(a,b)</td>
<td>1.0</td>
<td>0.5</td>
<td>0.100</td>
<td>6.000</td>
</tr>
<tr>
<td>ρ_z</td>
<td>Beta(a,b)</td>
<td>1.0</td>
<td>2.0</td>
<td>0.026</td>
<td>0.776</td>
</tr>
<tr>
<td>ρ_{ν_z}</td>
<td>Beta(a,b)</td>
<td>1.0</td>
<td>2.0</td>
<td>0.026</td>
<td>0.776</td>
</tr>
<tr>
<td>ρ_a</td>
<td>Beta(a,b)</td>
<td>1.0</td>
<td>2.0</td>
<td>0.026</td>
<td>0.776</td>
</tr>
<tr>
<td>ρ_{ν_a}</td>
<td>Beta(a,b)</td>
<td>1.0</td>
<td>2.0</td>
<td>0.026</td>
<td>0.776</td>
</tr>
<tr>
<td>ρ_θ</td>
<td>Beta(a,b)</td>
<td>1.0</td>
<td>2.0</td>
<td>0.026</td>
<td>0.776</td>
</tr>
<tr>
<td>ρ_ξ</td>
<td>Beta(a,b)</td>
<td>1.0</td>
<td>2.0</td>
<td>0.026</td>
<td>0.776</td>
</tr>
<tr>
<td>ρ_ψ</td>
<td>Beta(a,b)</td>
<td>1.0</td>
<td>2.0</td>
<td>0.026</td>
<td>0.776</td>
</tr>
<tr>
<td>σ_z</td>
<td>Inv-Gam(a,b)</td>
<td>0.3261</td>
<td>1.45e04</td>
<td>0.0001</td>
<td>2.0000</td>
</tr>
<tr>
<td>σ_{ν_z}</td>
<td>Inv-Gam(a,b)</td>
<td>0.3261</td>
<td>1.45e04</td>
<td>0.0001</td>
<td>2.0000</td>
</tr>
<tr>
<td>σ_a</td>
<td>Inv-Gam(a,b)</td>
<td>0.3261</td>
<td>1.45e04</td>
<td>0.0001</td>
<td>2.0000</td>
</tr>
<tr>
<td>σ_{ν_a}</td>
<td>Inv-Gam(a,b)</td>
<td>0.3261</td>
<td>1.45e04</td>
<td>0.0001</td>
<td>2.0000</td>
</tr>
<tr>
<td>σ_θ</td>
<td>Inv-Gam(a,b)</td>
<td>0.3261</td>
<td>1.45e04</td>
<td>0.0001</td>
<td>2.0000</td>
</tr>
<tr>
<td>σ_ξ</td>
<td>Inv-Gam(a,b)</td>
<td>0.3261</td>
<td>1.45e04</td>
<td>0.0001</td>
<td>2.0000</td>
</tr>
<tr>
<td>σ_ψ</td>
<td>Inv-Gam(a,b)</td>
<td>0.3261</td>
<td>1.45e04</td>
<td>0.0001</td>
<td>2.0000</td>
</tr>
</tbody>
</table>

Note: “Low” and “High” denote the bounds of the 90% probability interval for each parameter.
References

Review of Financial Studies, 10(3), 661–691.
Piazzesi, M., and M. Schneider (2009): “Momentum Traders in the Housing Market:
Primiceri, G. E., E. Schaumburg, and A. Tambalotti (2006): “Intertemporal Dis-
Quart, D. C., and J. M. Quigley (1989): “Inferring an Investment Return Series for
Economic Dynamics, 16, 1–10.