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a b s t r a c t

Inference for multiple-equation Markov-chain models raises a number of difficulties that are unlikely
to appear in smaller models. Our framework allows for many regimes in the transition matrix, without
letting the number of free parameters grow as the square as the number of regimes, but also without
losing a convenient form for the posterior distribution. Calculation of marginal data densities is difficult
in these high-dimensional models. This paper gives methods to overcome these difficulties, and explains
why existingmethods are unreliable. Itmakes suggestions formaximizing posterior density and initiating
MCMC simulations that provide robustness against the complex likelihood shape.
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1. Introduction

This paper extends the methods of Hamilton (1989), Chib
(1996), and Kim and Nelson (1999) to large Markov-switching
multiple-equation models. In such large models, a variety of mod-
elling choices, not needed in single-equation models, are required
to control dimensionality. We provide a general framework for
keeping these models tractable, develop a new procedure to im-
plement themodified harmonic means (MHM)method for achiev-
ing accuracy of the estimated marginal data density, and supply a
general-purpose software package to make estimation and infer-
ence of large Markov-switching models computationally feasible.
This paper considers a large class of restrictions on the

parameters in the transition matrix. Under certain conditions, this
class maintains a standard posterior density form for the free
parameters in the transition matrix. Although one could directly
derive and code up the posterior density function case by case,
we propose a general-purpose interface that is straightforward for
researchers to automate potentially complex restrictions by simply
expressing them in convenientmatrix form.We showhow such an
interfacematrix can be formed in the context of a variety ofmodels
and discuss how our framework is related to these models.

∗ Corresponding address: Federal Reserve Bank of Atlanta, 1000 Peachtree Street,
N.E., Atlanta, GA 30309, United States. Tel.: +1 404 498 8353; fax: +1 404 498 8956.
E-mail address: tzha@earthlink.net (T. Zha).

In the macroeconomic literature, there are two potential
problemswith Bayesian analysis. First, if theMarkov-ChainMonte-
Carlo (MCMC) algorithm begins with an arbitrary starting point
without searching for the maximum likelihood estimate (MLE)
or the posterior estimate at the peak of the posterior density
function, this starting point may turn out to be in the very low
probability region and the posterior draws simulated from the
MCMC algorithm may get stuck in this region. We develop an
efficient blockwise optimization method designed to find the MLE
or the posterior mode for a complicated or large dynamic model.
The second problem is associated with the standard MHM

method in which the variance of the weighting function can
be arbitrarily scaled. Changes in the variance of the weighting
function can cause the estimate of the marginal data density to
fluctuate drastically; the standard approach of truncating the tail
of the weighting distribution doest not, in general, prevent this
fluctuation. Our new way of implementing the MHM method
is designed to deal with this uncertainty explicitly. We show
that such uncertainty can be significantly reduced by explicitly
calculating the degree of overlap between the weighting function
and the posterior density.
When one evaluates the marginal data density using the

standard MHMmethod, a typical choice of the weighting function
is a Gaussian density constructed from the first two sample
moments of the posterior distribution. If the posterior distribution
is very non-Gaussian, however, such a weighting function can
be a poor approximation. We propose a more general weighting
function that aims at dealing with the non-Gaussian shape of the
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posterior distribution. This kind of weighting function includes a
Gaussian density as a special case and proves toworkwell for high-
dimensional models such as vector autoregressions (VARs).
The rest of the paper is organized as follows.
Section 2 proposes a general framework for large Markov-

switching models with a variety of restrictions imposed on
the transition matrix. Section 3 shows how our framework
encompasses a large set of regime-switchingmodels and discusses
the advantage of our framework in the context of existing time-
varying models.
Section 4 presents the prior and discusses the importance of

an informative prior and the issues related to training samples
and Bayesian information criterion (BIC). Under some regularity
conditions, the likelihood function and the posterior distribution
are derived in Section 5.
In Section 6, we proposes a blockwise optimization method

for finding the posterior mode. The method proves, in large
or complicated Markov-switching models, to be computationally
more efficient than the Monte Carlo expectation-maximization
(EM) algorithm,which has beenwidely used in similar, but smaller,
models.
In Section 7, we construct a variation on the MHMmethod that

works much better, offer a practical way of gauging howmuch the
weighting function and the posterior density overlap, and discuss
the importance of being able to evaluate the overall likelihood.
Section 8 applies our general framework to Markov-switching

VAR models. We illustrate how our computer software makes it
feasible to fit a large set of empirical models to the post-war US
data. We use an empirical model to show that the standard MHM
runs into severe difficulties and as a resultmay lead to an erroneous
estimate of the marginal data density.
And Section 9 concludes.

2. General Markov-switching framework

2.1. Distributional assumptions

Let (Yt , Zt , θ,Q , St) be a collection of random variables where

Yt = (y1, . . . , yt) ∈
(
Rn
)t
,

Zt = (z1, . . . , zt) ∈
(
Rm
)t
,

θ = (θi)i∈H ∈
(
Rr
)h
,

Q =
(
qi,j
)
(i,j)∈H×H ∈ Rh

2
,

St = (s0, . . . , st) ∈ H t+1,
STt+1 = (st+1, . . . , sT ) ∈ H

T−t ,

and H is a finite set with h elements and is usually taken to be
the set {1, . . . , h}. The object yt represents an n × 1 vector of
endogenous variables and zt represents an m vector of exogenous
variables. Thus, our analysis encompasses a special case in which
there are no exogenous variables. The matrix Q is a Markov
transitionmatrix and qi,j is the probability that st is equal to i given
that st−1 is equal to j. The matrix Q is restricted to satisfy

qi,j ≥ 0 and
∑
i∈H

qi,j = 1.

For 1 ≤ j ≤ h, let qj be the jth column of Q and q be an h2-
dimensional column vector stacking these qj’s. The objects θ and
q are vectors of parameters, Yt and Zt are observed data, and St
can be considered as either a sequence of latent variables or a
vector of nuisance parameters. We assume that (Yt , Zt , θ, q, St)
has a joint density function p (Yt , Zt , θ, q, St), where we use the
Lebesguemeasure1on (Rn)t×(Rm)t×(Rr)h×Rh
2
and the counting

measure on H t+1. This density satisfies the following conditions.

Condition 1.
p (st | Yt−1, Zt−1, θ, q, St−1) = qst ,st−1 , for t > 0.

Condition 2.
p (zt | Yt−1, Zt−1, θ, q, St) = p (zt | Yt−1, Zt−1) , for t > 0.

Condition 3.
p (yt | Yt−1, Zt , θ, q, St) = p

(
yt | Yt−1, Zt , θst , q, st

)
, for t > 0.

Condition 1 states formally that the sequence St evolves
according to an exogenous Markov process with the transition
matrix Q . Condition 2 states that zt is a predetermined variable.
Condition 3 asserts that the model for yt conditional on the past
depends only on the current value of the state, not on lagged
values of it. This condition is needed tomakepossible the backward
recursion discussed in Section 5; this condition also makes it
feasible to integrate out all the regimes ST for obtaining the
likelihood p(YT | ZT , θ, q).

2.2. Restrictions on Q

An important part of our general framework is to encompass a
wide range of restrictions on Q , while maintaining the standard
form of its posterior probability density function. Suppose Q is
unrestricted and the following condition is satisfied.

Condition 4.
p (yt | Yt−1, Zt , θ, q, st) = p (yt | Yt−1, Zt , θ, st) .

Then the density of qj conditional on (YT , ZT , θ, ST ) is of the
Dirichlet form, if the prior on qj is of the Dirichlet form and the
initial distribution on s0 does not depend on q. All the restrictions
on q studied in this paper preserve the Dirichlet form of the
posterior distribution of q conditional on other parameters of the
model, when Condition 4 holds. In Section 5 we will discuss the
situation in which Condition 4 does not hold.
For 1 ≤ j ≤ v, let wj be a dj-dimensional vector, where v may

be greater than h (although it is less than or equal to h in most
applications) and the elements of wj are non-negative and sum to
one. Letw be a d-dimensional column vector obtained by stacking
wj’s, where d =

∑v
j=1 dj. The restrictions on q are represented by

q = Mw, (1)
whereM is an h2 × dmatrix such that

M =

M1,1 · · · M1,v...
. . .

...
Mh,1 · · · Mh,v

 .
Denote an h×1 vector of ones by 1h. The submatrixMi,j is an h×dj
matrix and satisfies the following two conditions:

Condition 5. For each (i, j), all the elements of Mi,j are non-
negative and 1′hMi,j = λi,j1

′

dj
, where λi,j is the sum of the elements

in any column ofMi,j.

Condition 6. Each row ofM has at most one non-zero element.
Condition 5 is necessary to ensure that the elements of qj are

positive and sum to one. Condition 6 ensures that the likelihood
as a function of wj has the Dirichlet density form. It follows from
these conditions that one may assume without loss of generality

1 Instead of the Lebesgue measure, any sigma-finite measure on Rn and Rm can
be used as long as the product measure is used on (Rn)t and (Rm)t .
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that dj ≤ h and d ≤ h2. Our class of restrictions on Q encompasses
a wide range of models discussed in the literature.
Working directly on the transition matrix Q that satisfies the

restrictions specified by (1), without explicitly constructing the
transformation matrix M in the manner of Conditions 5 and 6,
is conceptually feasible but practically difficult. In particular, if
restrictions are complicated and the researcher does not wish
to derive and code up the posterior density of free elements
in the transition matrix each time when a new application is
studied, the setup represented by (1) provides an efficient way
to automate the handling of different kinds of restrictions in
one convenient, general framework and to eliminate potential
mathematical and programming errors that may occur for each
newapplication.When the researcher chooses to use our computer
program, moreover, the general-purpose interface matrixM in (1)
as one of inputs for the program becomes very handy and easy to
implement.2 From (1) it is clear that q or Q is known once w is
given. For the rest of the paper, therefore, we will focus on the free
parameter vectorw.
In the next section we illustrate how to construct the

transformation matrix M for a wide class of regime-switching
models. Most of the examples are used to show how to keep the
number of free parameters in the transition matrix from growing
too fast as the number of regimes increases.

3. A class of regime-switching models

In this section we show that the framework presented in the
last section is flexible enough to encompass a variety of regime-
switching models by representing various types of restrictions
on the transition matrix in our analytical framework, which also
serves as an interface for the user of our software package.
We discuss these models in comparison with other time-varying
models studied in the literature and explicate why we prefer our
framework.

3.1. Structural breaks

By splitting the sample into two subsamples, Clarida et al.
(2000) and Lubik and Schorfheide (2004) find that US monetary
policy has switched regime, once for all, since early 1980. One can
improve their sample-splittingmethod bymodelling the structural
break in our Markov-switching framework in which there is a
probability that monetary policy in the first part of the sample
switches to an irreversible regime in the second part of the sample,
while other parts of the economy remain constant.3 The transition
matrix for this regime shift can be written as[
q1,1 0
q2,1 1

]
.

Using the form (1), the restrictions can be expressed as

M1,1 =
[
1 0
0 1

]
, M2,2 =

[
0
1

]
,

andMi,j = 0 for i 6= j, where v = 2, d1 = 2, and d2 = 1.
In one of the structural models in Sims and Zha (2006), they

find that monetary policy regime that has prevailed in the 1990s
and 2000s was also dominant in most of the 1960s and in some
parts of the 1970s. They treat this regime to be recurrent. If one

2 The software is available at http://home.earthlink.net/tzha02/ProgramCode/
programCode.html. In Appendix C, we illustrate a concrete example of how to use
the interface with our software program.
3 Our method also improves on the approach of Beyer and Farmer (2004), who

do not treat breaks stochastically.
believes that this policy regime would last indefinitely from now
on (the belief we do not share), how does one specify such regime
changes in our framework? In this situation, we have two policy
regimes: hawkish and dovish in response to inflation. The hawkish
regime is recurrent in the first part of the sample and then become
irreversible in the second part of the sample. We can write the
transition matrix as

Q =

[q1,1 q1,2 0
q2,1 q2,2 0
0 q3,2 1

]
,

with a further restriction that the parameters in thepolicy equation
in the first regime is the same as those in the third regime. Thus,
the first and third regime represent the hawkish policy, while the
second regime represents the dovish policy. In our framework, the
restrictions on Q can be expressed as

M1,1 =

[1 0
0 1
0 0

]
, M2,2 =

[1 0 0
0 1 0
0 0 1

]
, M3,3 =

[0
0
1

]
,

andMi,j = 0 for i 6= j, where v = 3, d1 = 2, d2 = 3, and d3 = 1.
In the literature on reduced-form statistical models, structural

breaks are sometimes modeled as multiple change points where st
can either remain at the current regime or switch to the next higher
value (Chib, 1998). Because st is not allowed to switch back to the
previous lower value, the changing-pointmodel precludes the case
of recurrent regimes as previously discussed. This one-step ahead
transition matrix is represented as

Q =



q1,1 0 · · · 0 0
q2,1 q2,2 · · · 0 0
0 q3,2 · · · 0 0
...

...
...

...
...

0 0
... qh−1,h−1 0

0 0
... qh,h−1 1


.

In our framework, these exclusion restrictions imposed on Q can
be expressed as

M1,1 =



1 0
0 1
0 0
...

...
0 0
0 0

 , M2,2 =



0 0
1 0
0 1
...

...
0 0
0 0

 , . . . ,

Mh−1,h−1 =



0 0
0 0
0 0
...

...
1 0
0 1

 , Mh,h =



0
0
0
...
0
1

 ,

and Mi,j = 0 for i 6= j, where v = h, d1 = · · · = dh−1 = 2, and
dh = 1.
This specification does not impose that all the regimes allowed

for in the transition matrix actually occur in the sample. Since
we use MCMC simulation of the posterior for inference, and draw
sequences of regimes in the simulation, the number of regimes
that actually occur in the sample is a posteriori uncertain, and we
can easily tabulate its posterior distribution. This is the approach
of Chopin and Pelgrin (2004), though they propose a specific
approach to parameterization of the model that does not match
what we suggest here. Note that one can tabulate a distribution of
the number of regimes that actually occurred in the sample from

http://home.earthlink.net/tzha02/ProgramCode/programCode.html
http://home.earthlink.net/tzha02/ProgramCode/programCode.html
http://home.earthlink.net/tzha02/ProgramCode/programCode.html
http://home.earthlink.net/tzha02/ProgramCode/programCode.html
http://home.earthlink.net/tzha02/ProgramCode/programCode.html
http://home.earthlink.net/tzha02/ProgramCode/programCode.html
http://home.earthlink.net/tzha02/ProgramCode/programCode.html
http://home.earthlink.net/tzha02/ProgramCode/programCode.html
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the MCMC simulations with any specification of Q , though when
the regimes are few and recurrent the distribution is likely to be
nearly degenerate.4
Koop and Potter (in press) have another approach to change

points, not directly based on a hidden Markov chain. They observe
that models that postulate a distribution of a fixed number of
multiple change points across the sample can imply implausibly
high probabilities of change at the beginning or end of the sample,
conditional on the number that have occurred in the rest of the
sample. This problem does not arise in Markov-switching setups
like ours. They also suggest that it may sometimes be natural to
have the probability of a switch depend on the time since the
last shift, which a Markov-switching framework like ours cannot
implement.

3.2. Incremental and discontinuous shifts

The parameter-drift and stochastic-volatility model studied
by Cogley and Sargent (2005) captures continuously incremental
changes in the model parameters.5 Such incremental changes can
be approximated arbitrarily well by expanding the number of
regimes (Tauchen, 1986). Our approach has advantage over that
of Cogley and Sargent (2005) because it allows for occasional
discontinuous shifts in regime as well as frequent, incremental
changes in parameters, while keeping the number of free
parameters in the transition matrix in a much smaller dimension.6

One way to achieve this objective is to concentrate weight on the
diagonal ofQ (Zha, 2008). Specifically, one can express incremental
changes and discontinuous jumps among h regimes as

Q =



π1 β2α2(1− π2) . . . βhα
h−1
h (1− πh)

β1α1(1− π1) π2 . . . βhα
h−2
h (1− πh)

β1α
2
1(1− π1) β2α2(1− π2) . . . βhα

h−3
h (1− πh)

. . . . . . . . . . . .

β1α
h−1
1 (1− π1) β2α

h−2
2 (1− π2) . . . πh

 ,

where the free parameter πi is to be estimated and the
hyperparameters 0 < αi < 1 and βi are taken as given. The
restrictions can be written as

M1,1 =


1 0
0 β1α1
0 β1α

2
1

. . . . . .

0 β1α
h−1
1

 , M2,2 =


0 β2α2
1 0
0 β2α2
. . . . . .

0 β2α
h−2
2

 , . . . ,

Mn+1,n+1 =


0 βhα

h−1
h

0 βhα
h−2
h

0 βhα
h−3
h

. . . . . .
1 0

 ,
where the value of αi controls the speed of decay and the value of
βi is so chosen that elements in the second column of Mi,i sum to
1. Note that v = h, d1 = · · · = dh = 2, andMi,j = 0 for i 6= j.

4 It is worth noting that when estimating the number of regimes that have
occurred in the sample, we are recognizing that there may be ‘‘collapsed regimes’’
– regimes that do not occur – in a particular MCMC draw. This is the terminology
of Scott (2002), who points out that in a model where collapsed regimes are likely
it will be important to use a hierarchical prior and substantive prior restrictions to
avoid pathologies in the MCMC sampler that collapsed regimes can produce.
5 See also Sims (1993), Cogley and Sargent (2002), Stock and Watson (2003),

Canova and Gambetti (2004) and Primiceri (2005).
6 Discontinuous shifts have been found to be an important source of conditional

heteroskedasticity observed in many macroeconomic time series (Kim and
Nelson,1999, Chapter 6; Hamilton, 1988).
The above example shows that we can reduce a large number
of elements in the transitionmatrix to a handful of free parameters
whose dimension is equal to the number of regimes. The empirical
results of Cogley and Sargent (2005) show that the dimension of
parameters that change significantly can be extremely small. In
our framework, the class of restrictions specified in (1) enables us
to keep the number of free parameters fixed while expanding the
number of regimes. Consider an h × h transition matrix Q in the
form of

a b/2 · · · 0 0

b a
. . .

...
...

0 b/2
. . . b/2 0

...
...

. . . a b
0 0 · · · b/2 a

 ,

where a + b = 1. This restricted transition matrix implies that
when we are in regime j, the probability of moving to regime j− 1
or j + 1 is symmetric and independent of j. Let v = 1 and d1 = 2.
We can express this restriction as

M1,1 =


1 0
0 1
0 0
...

...
0 0

 , Mh,1 =


0 0
...

...
0 0
1 0
0 1

 ,
and for 1 < i < h, the h × 2 matrix Mi,1 is zero except for a
submatrix centered at the ith row that has the form[0 1/2
1 0
0 1/2

]
.

In general, our framework is flexible enough to handle more
elaborate caseswhere the jumping probabilities are not symmetric
or independent or where the regime jumps to nearby (but not
adjacent) regimes.
In practice, it is sometimes found that the data do not favor

a large number of regimes for dynamic macroeconomic models.
When the number of regimes is small, we follow Sims’s (2001)
approach to parsimonious parametrization of Q by introducing
symmetric jumping among adjacent regimes. In the case of four
regimes, for example, the transition matrix is restricted as

Q =

 π1 (1− π2)/2 0 0
1− π1 π2 (1− π3)/2 0
0 (1− π2)/2 π3 1− π4
0 0 (1− π3)/2 π4

 (2)

whereπ1,π2,π3, andπ4 are free parameters to be estimated. These
restrictions can be expressed as

M1,1 =

1 0
0 1
0 0
0 0

 , M2,2 =

0 1/2
1 0
0 1/2
0 0

 ,

M3,3 =

0 0
0 1/2
1 0
0 1/2

 , M4,4 =

0 0
0 0
1 0
0 1

 ,
and Mi,j = 0 for i 6= j, where v = 4 and d1 = d2 = d3 = d4 = 2.
Our experience indicates that the data tends to favor this restricted
transition matrix than the unrestricted version.
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3.3. Other models

In this subsection we further illustrate the flexibility of our
framework by applying it to other models that are often used in
macroeconomics.

3.3.1. Time-dependent transition probabilities
In this subsection we demonstrate the flexibility of our

framework by showing an example of using the transition matrix
to capture some threshold features. Consider a three-regime
example where the third regime is irreversible. A transition to this
absorbing regime is time-dependent and the transition probability
at time t is ι{f (Yt−1, Zt−1) > c} where c is a real constant, f ()
is a function, and ι{} is an indicator function that returns to 1 if
the statement in the curly brackets is true and 0 otherwise. The
transition probability matrix from st−1 to st takes the form

Qt−1 =

[q1,1 q1,2 (1− ι{f (Yt−1, Zt−1) > c}) 0
q2,1 q2,2 (1− ι{f (Yt−1, Zt−1) > c}) 0
0 ι{f (Yt−1, Zt−1) > c} 1

]
.

To put these restrictions in thematrix formMt−1, let v = 3, d1 = 2,
d2 = 2, and d3 = 1. The 9× 5 matrixMt−1 is

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0
(
1− ι{f (Yt−1, Zt−1) > c}

)
0 0

0 0 0
(
1− ι{f (Yt−1, Zt−1) > c}

)
0

0 0 0 0 ι{f (Yt−1, Zt−1) > c}

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1


Aswill be discussed in Section 5, theMCMC algorithm valid for the
constant transition matrix can be carried over to the case where
transition probabilities are functions of Yt−1 and Zt−1.

3.3.2. Cross-time composite Markov process
The original approach of Hamilton (1989) makes it explicit for

the model parameters to depend on not only the current regime
but also the previous regime. Such a historical dependence on
regimes can also arise from regime-switching DSGE models (Liu
et al., 2008). To see how to deal with this feature in our framework,
consider the original regime variable, denoted by sot , takes on two
values and has the transition matrix Q o =

(
qoi,j
)
. Let the composite

Markov process, st = {sot , s
o
t−1}, consist of a pair of current and

previous regimes. There are four possibilities for st and the overall
transition matrix Q for st must be of the form

(st−1, st−2)

(st , st−1)

(1, 1) (1, 2) (2, 1) (2, 2)
(1, 1) qo1,1 qo1,1 0 0
(1, 2) 0 0 qo1,2 qo1,2
(2, 1) qo2,1 qo2,1 0 0
(2, 2) 0 0 qo2,2 qo2,2.

To express this restricted Q in the form of (1), we have v = 2,
d1 = d2 = 2,M1,2 = M2,2 = M3,1 = M4,1 = 0,

M1,1 = M2,1 =

1 0
0 0
0 1
0 0

 , and M3,2 = M4,2 =

0 0
1 0
0 0
0 1

 .
This same technique applies to a switching model that depends on
the composite regime st = {sot , . . . , s

o
t−k} for any integer k ≥ 0.

3.3.3. Independent Markov processes
In macroeconomic applications, a Markov process governing

one equation (such as monetary policy) may be independent of
a Markov process controlling another equation (such as fiscal
policy); a Markov process governing shock processes may be
independent of a Markov process dictating coefficients in the
model. In general, we consider τ independent Markov processes
such that h =

∏τ
k=1 h

k and H =
∏τ
k=1 H

k, where Hk ={
1, . . . , hk

}
, st =

(
s1t , . . . , s

τ
t

)
, and skt ∈ H

k. The transition matrix
Q is therefore restricted to the form

Q = Q 1 ⊗ · · · ⊗ Q τ

where Q k =
(
qki,j
)
is an hk × hk matrix such that

qki,j ≥ 0 and
∑
i∈Hk
qki,j = 1.

The tensor product representation of Q implies that if i =(
i1, . . . , iτ

)
∈ H and j =

(
j1, . . . , jτ

)
∈ H , then qi,j =∏τ

k=1 q
k
ik,jk . Conditional on Q , the composite Markov process

st consists of τ independent Markov processes skt . If Q were
not restricted to this tensor product representation, it would
contain

(∏τ
k=1 h

k
) (∏τ

k=1 h
k
− 1

)
parameters. With these non-

linear restrictions, there are only
∑τ
k=1 h

k
(
hk − 1

)
parameters—a

substantial reduction of the number of parameters.
One can, moreover, combine this type of restriction with

restrictions on each Q k individually. Specifically, we let

• qk be the
(
hk
)2-dimensional vector obtained by stacking the

columns of Q k,
• wkj be a d

k
j -dimensional vector whose elements are non-

negative and sum to one for 1 ≤ j ≤ vk,
• wk be the the dk-dimensional vector obtained by stacking the
wkj , where d

k
=
∑vk

j=1 d
k
j ,

• Mk be a
(
hk
)2
× dk matrix satisfying Conditions 5 and 6.

It follows from Section 2.2 that Q k can restricted by requiring

qk = Mkwk.

In the remainder of this paper, we simplify the notation by
suppressing the superscript denoting the particular independent
Markov regime variable that is under consideration. It is important
to remember, however, that all of the results apply to a product
of independent Markov regime variables by simply putting the
superscript k back in appropriate places.

3.3.4. Correlated Markov processes
It is often argued that business cycle turning points contain

leading and coincident components (Stock and Watson, 2002).
In a large panel data set, some time series may be grouped
as leading indicators and others as coincident indicators. Using
the multiple-equation Markov-switching framework, we can
identify one regime governing the parameters in the leading-
indicator equations and another regime governing those in the
coincident-indicator equations (Kim and Nelson (1999, Chapter
5), and Kaufmann (2007)). Denote the leading regime variable by
slt and the coincident regime variable by sct ; and consider the
composite regime variable st = {slt , sct}, where slt = {1, 2} and
sct = {1, 2}. Since the regime variable slt leads the regime variable
sct , the transition matrix Q for the composite regime variable st is

(sl t−1, sc t−1)

(slt , sct)

(1, 1) (1, 2) (2, 1) (2, 2)
(1, 1) π1 1− π2 0 0
(1, 2) 0 π2 0 1− π4
(2, 1) 1− π1 0 π3 0
(2, 2) 0 0 1− π3 π4.

To represent the restrictions imposed on Q in the form of (1), we
have v = 4, d1 = d2 = d3 = d4 = 2,
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M1,1 =

1 0
0 0
0 1
0 0

 , M2,2 =

1 0
0 1
0 0
0 0

 ,

M3,3 =

0 0
0 0
1 0
0 1

 , M4,4 =

0 0
1 0
0 0
0 1

 ,
and Mi,j = 0 for i 6= j. From Q one can derive the transition
probabilities for slt and sct . Let q̄1, q̄2, q̄3, and q̄4 be the ergodic
probabilities for the composite regime variable st and assume that
q̄1 + q̄2 6= 0, q̄3 + q̄4 6= 0, q̄1 + q̄3 6= 0, and q̄2 + q̄4 6= 0. It follows
that

Pr{slt = 1 | sl t−1 = 1} =
q̄1π1 + q̄2
q̄1 + q̄2

,

Pr{slt = 2 | sl t−1 = 2} =
q̄3 + q̄4π4
q̄3 + q̄4

,

Pr{sct = 1 | sc t−1 = 1} =
q̄1 + q̄3π3
q̄1 + q̄3

,

Pr{sct = 2 | sc t−1 = 2} =
q̄2π2 + q̄4
q̄2 + q̄4

.

In general, for any composite regime st =
(
s1t , . . . , s

τ
t

)
and the

associated transition matrix Q , one can restrict Q such that the
marginal probability of skt and the probability of s

k
t conditional on

other types of regimes satisfy certain properties.

4. The prior

In this sectionwedescribe away to set the prior on all themodel
parameters.We beginwith the casewhereQ is unrestricted, as this
case is commonly considered in the literature. For 1 ≤ i, j ≤ h, let
αi,j be a positive number. The prior on Q is of the Dirichlet form

p (Q ) =
∏
j∈H


0

(∑
i∈H
αi,j

)
∏
i∈H
0
(
αi,j
)
×∏

i∈H

(
qi,j
)αi,j−1

 , (3)

where 0(·) denotes the standard gamma function. In such an
unrestricted case if our a priori beliefs about the persistence of
regimes are symmetric across regimes and we do not expect
regimes to be ordered by ‘‘distance’’ from one another, it is natural
to form the prior to reflect prior beliefs about the persistence
of the regimes, making the probabilities of jumping to other
regimes identical. This is also what Sims and Zha (2006) did. In the
application below we set αi,j = 1 for i 6= j and let pj,dur = Eqj,j be
the expected value of the probability of staying in the same regime
j. We have

pj,dur = Eqj,j =
αj,j∑
i
αi,j
=

αj,j

αj,j + (h− 1)
.

It follows that

αj,j =
pj,dur(h− 1)
1− pj,dur

. (4)

By setting αi,j = 1 for i 6= j, we insure that the prior density is
bounded away from zero as qj,j → 1.
Sims and Zha (2006) instead chose both a mean and a prior

standard deviation for qj,j, and chose the prior standard deviation
tight enough to make αi,j > 1 for i 6= j. If we set αi,j = ᾱj for
all i 6= j, the implied marginal prior for qj,j is a Beta(αj,j, (h −
1)ᾱj) pdf. One could plot these one-variable pdf’s and choose ᾱj
(holding the mean αj,j/(αj,j + (h − 1)ᾱj) fixed) to make this
pdf look reasonable. With a large number of regimes, this can
easily lead to choosing ᾱj < 1, implying that the marginal
density on the off-diagonal qi,j’s is unbounded at zero. There is no
simple answer to these conflicting criteria. In models with large
numbers of regimes, imposing more structure on Q is attractive in
part because symmetric priors would look unreasonable without
careful parameterizations.
In our empirical section (Section 8.7), where quarterly data are

used, for example, we set pj,dur = 0.85, implying a prior belief that
the average duration of staying in the same regime is between six
and seven quarters. In the two-regime case, it follows from (4) that,
with the convention that ᾱj = 1,

αj,j = 5.666667, αi,j = 1 for i 6= j. (5)

In the four-regime case, it follows from (4) that

αj,j = 17, αi,j = 1 for i 6= j. (6)

When the dimension of Q increases, one must prevent the
number of free parameters in Q from growing too fast by
restricting the transition matrix Q as in Section 2.2. How does
one specify the prior for the restricted Q? Denote wj =[
w1,j, . . . , wdj,j

]′. The prior onwj is of the Dirichlet form
0

(
dj∑
i=1
βi,j

)
dj∏
i=1
0
(
βi,j
)

dj∏
i=1

(
wi,j
)βi,j−1 (7)

where βi,j > 0. The prior on Q can be recovered via (1).
In the restricted case, it is important that the value of the

hyperparameter βj,j be chosen according to the prior on wj, not
on the prior of the unrestricted parameter vector qj. To see this
point, consider the four-regime case with the the transitionmatrix
restricted as in (2). Take as an example the first two columns of
this Q and express the restrictions on q1 and q2 in the form of
qj = Mjwj:

q1,1 = w1,1, q2,1 = w2,1, q3,1 = 0, q4,1 = 0,

q2,2 = w2,2, q1,2 =
1
2
w1,2, q3,2 =

1
2
w1,2, q4,2 = 0.

If we take as given the values of αi,j specified in (4) (as supplied
by the user who is accustomed to working on an unrestricted
transition matrix) and transform them to βi,j as

βi,j = 1+
∑

{(r,s):Mr,j(s,i)>0}

(
αr,s − 1

)
,

we have

β1,1 = α1,1, β2,1 = α2,1 = 1,
β2,2 = α2,2, β1,2 = α1,2 = 1.

According to the Dirichlet prior (7) directly imposed on the free
parametersw, we have

Ew1,1 =
β1,1

β1,1 + β2,1
, Ew2,1 =

β2,1

β1,1 + β2,1
,

Ew2,2 =
β2,2

β2,2 + β1,2
, Ew1,2 =

β1,2

β2,2 + β1,2
.

If we were to use the values specified in (6) for the unrestricted
Q , we would have Eqj,j = Ewj,j = 0.94, implying a prior belief
that the average duration of staying in the same regime is about 17
quarters, much longer than the prior belief when Q is unrestricted.
This is not the prior we have originally intended to specify. For
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this reason, we insist that the prior be specified directly on wi,j to
maintain the same prior belief on the average duration, no matter
we work on an unrestricted or restricted transition matrix. In our
four-regime case, we let the hyperparametersβj,j = 5.666667 (not
17 as (6)) and βi,j = 1.0 for i 6= j. It follows that pj,dur = 0.85, the
same prior duration as we have intended.
The joint prior density for θ,w, ST is

p (θ, w, ST ) = p (θ, w) p (s0 | θ,w)
T∏
t=1

p (st | θ,w, St−1) .

By Condition 1, p (st | θ,w, St−1) = qst ,st−1 . We assume that
the prior on θ is independent of the prior on w and that
p (s0 | θ,w) = 1

h for every s0 ∈ H . A common alternative
assumption for p (s0 | θ,Q ) makes it the ergodic distribution of
Q , if the ergodic distribution exists. This convention, however,
makes the conditional posterior distribution of Q an unknown
and complicated one.With our specification of equiprobable initial
regimes, the resulting prior has the following form

p (θ, w, ST ) =
p (θ) p (w)

h

T∏
t=1

qst ,st−1 . (8)

The simplicity of the posterior can be preservedwith other choices
of initial distribution for the regimes that do not make it a
complicated function of the transition probabilities. For example,
one could normalize the regimes by insisting that regime 1 prevails
with probability one at the initial date in the sample, as long as this
is a non-absorbing regime.
The prescriptions we give here for formulating priors should

be taken as practical suggestions, not definitive rules. In models
like these, with large numbers of parameters, results can easily be
sensitive to the prior, and priors set in conventionalways can easily
turn out to have unexpected and unintended implications. Results,
especially for themarginal data density calculations used inmodel
comparisons, should be checked for robustness against variations
in the prior.
Most applications of these methods will not be direct input to

a single decision, but instead will be in the nature of scientific
reporting. The task of inference is therefore to characterize
likelihood shape to a wide range of potential readers, not to assess
a unique best prior for decision making. The prior should be kept
as simple and understandable as possible. It should reflect prior
beliefs likely to be common across the study’s readership, not in
general the beliefs of the researcher preparing the study.
Because results are likely to be sensitive to choice of the prior,

and because a careful choice of these highly multivariate priors is
a complex task, various shortcuts are sometimes used in practice.
The BIC criterion, for example, allows model comparison without
assessing any prior. In large samples, it will (under regularity
conditions) point to the samemodel as best as does any calculation
of posterior odds based on a prior (though it will not, even in large
samples, provide an accurate quantitative approximation to the
posterior odds). However, it amounts to using a conventional prior,
and precisely because in largemodels the implications of priors are
hard to assess, the chance that the BIC is implicitly using a prior
with bizarre implications is greater the larger and more complex
the model.
Another common shortcut is the ‘‘training sample prior’’. This is

equivalent to using the likelihood function itself as the posterior,
i.e. to using a flat prior, when we use the training sample for
inference on parameters. When we use it for model comparison,
it scales the likelihood so that the integral of the likelihood over
the training sample is one (so it functions as a ‘‘prior’’). This
undercuts the tendency of Bayesian model comparison to penalize
large models. Indeed, if a fixed proportion of the sample is used
as a training sample, Bayesian posterior odds will not converge in
large samples to the smaller of two nested models when the more
restricted model is the truth. This is one reflection of a general
point: training sample priors make large models improve relative
to small models. Especially when comparing complex models,
therefore, training sample priors should be treated as nomore than
a temporary, expedient shortcut.

5. Likelihood and posterior distribution

The key step in evaluating the overall likelihood function p(YT |
Zt , θ, w) for Markov-switching models is to obtain the conditional
likelihood function at time t:

p (yt | Yt−1, Zt , θ, w, st) . (9)

Our framework applies to any model if one can write down the
conditional likelihood (9). As long as h, the number of values st
takes, is finite and does not grow with t , the regime variable
st can be a complicated composite Markov process, as discussed
in Section 2.2. In their nonlinear dynamic general equilibrium
model, for example, Sargent et al. (2006) show that one of
the most difficult tasks is to derive this conditional likelihood
function. Another example pertains to Markov-switching state-
space models in which Kim and Nelson (1999) show how to obtain
the conditional likelihood function (9) that can be approximated
well without radically increasing the number of regimes h, so that
Condition 3 holds approximately.
Given (9) and conditional on the vector of exogenous variables

Zt , the likelihood of YT is7

p (YT | ZT , θ, w)

=

T∏
t=1

[∑
st∈H

p (yt | Yt−1, Zt , θ, w, st) p (st | Yt−1, Zt−1, θ, w)

]
.

(10)

This likelihood can be evaluated recursively by updating p(st |
Yt−1, Zt−1, θ, w) according to Propositions 1 and 2 in Appendix A.
By the Bayes rule it follows from (8) and (10) that the posterior

distribution of (θ, w) is

p(θ, w | YT , ZT ) ∝ p(θ, w)p(YT | ZT , θ, w). (11)

The posterior density p(θ, w | YT , ZT ) is not of standard form,
making it impossible to sample directly from this probability
distribution. One can, however, use the idea of Gibbs sampling to
obtain the empirical joint posterior density p(θ, w, ST | YT , ZT )
by sampling alternately from the following conditional posterior
distributions:

p(ST | YT , ZT , θ, w),
p(w | YT , ZT , ST , θ),
p(θ | YT , ZT , w, ST ).

Simulation from the conditional posterior density p(θ | YT , ZT , w,
ST ) is model-dependent, which we will discuss in the context of
VARs in Section 8.
To simulate draws of ST from p(ST | YT , ZT , θ, w), we beginwith

a draw from p(sT | YT , ZT , θ, w) obtained from the aforementioned
forward recursion and work recursively backward to draw sT−1,
sT−2, . . . , s0 according to

p (st | YT , ZT , θ, w)

=

∑
st+1∈H

p (st | Yt , Zt , θ, w, st+1) p (st+1 | YT , ZT , θ, w) ,

7 See Appendix B for details.
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where

p (st | Yt , Zt , θ, w, st+1) =
qst+1,st p (st | Yt , Zt , θ, w)
p (st+1 | Yt , Zt , θ, w)

.

This result follows from Proposition 3 in Appendix A (see
Appendix B for details of the derivation).
The conditional posterior density ofw derives directly from the

conditional posterior density of the free parameterswj.8 It follows
from Conditions 1 and 4 and the prior (7) that

p
(
wj | YT , ZT , θ, ST

)
∝

dj∏
i=1

(
wi,j
)ni,j+βi,j−1 , (12)

where ni,j is the number of transitions from st−1 = r to st = s for
Mr,j(s, i) > 0 andMr,j(s, i) is the sth-row and ith-column element
of the submatrixMr,j.
Although Condition 4 is valid for most reduced-form Markov-

switching models, it does not hold for forward-looking models
such as regime-switching rational expectations models (Farmer
et al., 2006).9 In such a case, however, the Dirichlet density derived
as though this condition were true is still valuable because it
can be used to form a basis for the proposal density in the
Metropolis–Hastings algorithm used for sampling from the true
conditional posterior distribution ofw.
We nowdiscuss the situation inwhich q is no longer constant as

in the example of Section 3.3.1. Let the transition probability from
st−1 = j to st = i be qi,j (Yt−1, Zt−1, w), where qi,j( ) is a general
function andw is a vector of free parameters. It can be shown that
the forward-recursion evaluation of the likelihood p(θ, w | YT , ZT )
and the backward-recursion algorithm of drawing ST from p(ST |
YT , ZT , θ, w) continue to be valid, as long as qst+1,st is replaced
by qst+1,st (Yt−1, Zt−1, w) (see Appendices A and B for details).
In general, however, the posterior density p (w | YT , ZT , θ, ST ) is
not of the Dirichlet form. In this case, the Metropolis–Hastings
algorithm can be used to sample from p (w | YT , ZT , θ, ST ) and
the Dirichlet density (12) can be used as a basis for the proposal
density.

6. Blockwise optimization algorithm

In spite of the complexity inherent in Markov-switching
multiple-equation models, it is important to find the posterior
estimate at the posterior mode or MLE for several reasons. When
the shape of the posterior density tends to be very non-Gaussian,
as it is often the case for Markov-switching multiple-equation
models, the posterior mean may have a very low probability
and cannot represent the most likely scenario for the model.
The posterior mode, on the other hand, always represents the
most likely point, regardless of how non-Gaussin the posterior
distribution is. Using a point near the posterior mode as a
starting point for the MCMC algorithm, one can ensure that an
unreasonably long sequence of posterior draws do not get stuck
in the low probability region. The posterior mode can be used
as a reference point in normalization to help avoid distorting
the statistical inferences likely to be produced by inappropriate
normalization (Waggoner and Zha, 2003b). And the likelihood
value conditional on the posterior estimate helps detect obvious
errors in computing marginal data densities for posterior odds
ratios.
Hamilton (1994) proposes an EMalgorithm to find the posterior

estimate or MLE for a simple Markov-switching model, where the

8 To be consistent with Section 4, we suppress the superscript k that indicates a
particular Markov process under study.
9 We thank Tim Cogley for drawing our attention to this point.
E-step can be completed analytically. For multivariate dynamic
models, however, the E-step in general has no analytical form. Chib
(1996) proposes aMonte Carlo EM (MCEM) algorithm inwhich the
evaluation of the E-step of the EM algorithm is approximated by
Monte Carlo simulations from the posterior distribution. For large
regime-switchingmultiple-equationmodels, theMCEM algorithm
can be very costly and sometimes take a couple of weeks to
obtain an estimate that is close to the peak of the likelihood,
as shown in Sims and Zha (2006). For parameter-drifting or
stochastic volatility models (Cogley and Sargent, 2005; Justiniano
and Primiceri, 2008), it is even infeasible to integrate out all latent
variables numerically.10
Because the cost of the numerical integration of ST can be

substantial, there is no need to use the MCEM algorithm as long
as the posterior density p(θ, w | YT , ZT ) given by (11) is available
for evaluation. When the number of parameters is small, one
may obtain the posterior estimate of θ by simply finding the
value of θ that maximizes the posterior density. Sims (2001) uses
this approach for his single-equation model. But for a system of
multivariate dynamic equations, the number of model parameters
may be too large for a straight maximization routine to be reliable.
We propose a different algorithm that is designed to work

for both small and large models. We first break the parameters
(θ, w) into two blocks of parameters θ and w. In practice, this
separation proves critical because the conditional posterior density
of θ differs substantially from that of w. If the dimension of θ
is large, as in the multivariate dynamic models considered in
Section 8.7, we recommend to break θ further into several sub-
blocks. Given an initial guess of the values of the parameters,
one can use a standard hill-climbing quasi-Newton optimization
routine to find the value of each block of parameters that
maximizes the posterior density while holding other blocks of
parameters fixed at the previous values. Iterate this algorithm
throughblocks until it approximately converges. For each iteration,
we recommend to employ a constrained optimization method
to check whether there are boundary solutions associated with
w or other model parameters. While this blockwise approach
will at first increase likelihood more efficiently than a quasi-
Newtonmethod applied directly to the complete parameter vector,
blockwise methods can be very inefficient at the final stages
of convergence. When the blockwise iterations have converged
or nearly converged, additional direct quasi-Newton steps on
the full parameter vector should be undertaken, with BFGS
(Broyden–Fletcher–Goldfarb–Shanno) updates of the full Hessian.
These additional steps in our experience substantially improve the
likelihood value. In Section 8.7, we show in an example that this
algorithm is more efficient than the MCEM algorithm.

7. New implementation of the MHMmethod

Estimating themarginal data density is an important taskwhen
one compares a large set of different models for the purpose of

10 Consider the simple one-dimensional model yt = atyt−1 + σtεt , where εt is
normally distributed with mean zero and variance ξ 2 . The drifting parameter at
and the volatility parameter σt are treated as latent state variables following the
stochastic processes

at = (1− ρa)a+ ρaat−1 + νa,t , log σt = (1− ρσ ) log σ + ρσ log σt−1 + νσ ,t ,

where νa,t is normally distributed with mean zero and variances ξ 2a and νσ ,t
is normally distributed with mean zero and variances ξ 2σ . One could form the
conditional likelihood

p (YT | ξ, ξa, ξσ , a, ρa, σ , ρσ , a1, . . . , aT , σ1, . . . , σT ) .

To find the peak of the likelihood p (YT | ξ, ξa, ξσ , a, ρa, σ , ρσ ) itself, however, one
must numerically integrate out all the latent variables a1, . . . , aT , σ1, . . . , σT . This
task is computationally infeasible even for a moderate sample size T .
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selecting the one that best fits to the data or for the purpose of
averaging a subset of models. For many macroeconomic models,
the modified harmonic mean (MHM) method of Gelfand and Dey
(1994) has been awidely usedmethod for computing themarginal
data density. In this section we discuss the potential problemwith
this method when the posterior distribution is very non-Gaussian
and propose a new way of implementing the MHM method to
remedy this problem. For notational clarity, we restrict ourselves
to the constant-parameter case, treat θ as a collection of all the free
parameters in the model, and omit the exogenous variables ZT and
the transition probabilitiesw. At the end of this section, we discuss
how to handle the Markov-switching models.
We begin by denoting the likelihood function by p(YT | θ)

and the prior density by p(θ), both of which must have proper
probability densities instead of their kernels. Given these two
objects, the marginal data density is defined as

p(YT ) =
∫
p(YT | θ)p(θ)dθ. (13)

The MHM method used to approximate (13) numerically is
based on the following theorem

p(YT )−1 =
∫
Θ

h(θ)
p(YT | θ)p(θ)

p(θ | YT )dθ, (14)

where Θ is the support of the posterior probability density and
h(θ), often called a weighting function, is any probability density
whose support is contained inΘ . Denote

m(θ) =
h(θ)

p(YT | θ)p(θ)
.

Anumerical evaluation of the integral on the right hand side of (14)
can be accomplished in principle through the Monte Carlo (MC)
integration

p̂(YT )−1 =
1
N

N∑
i=1

m(θ (i)), (15)

where θ (i) is the ith draw of θ from the posterior distribution p(θ |
YT ). If m(θ) is bounded above, the rate of convergence from this
MC approximation is likely to be practical.
Geweke (1999) proposes an implementation with h(·) con-

structed from the posterior simulator. The sample mean θ̄ and
sample covariance matrix Ω̄ can be calculated from draws of θ
from the posterior simulator. The weighting function is chosen to
be a truncated multivariate Gaussian density with mean θ̄ and co-
variance Ω̄ . The tail of the Gaussian distribution is truncated to
ensure that the support of the weighting function is contained in
the support of posterior. Our experience suggests that this method
works well for many existing DSGE and VAR models with no time
variation on the parameters. When one allows time variation in
the model’s parameters, the posterior density tends to be non-
Gaussian. The non-Gaussian phenomenon is manifested in three
aspects. First, the posterior density can be very low at the sample
mean, especially when the posterior density has multiple peaks.
Second, a truncated Gaussian density function tends to be a poor
local approximation to the non-Gaussian posterior density. Third,
the likelihood can get close to zero in the interior points of the
parameter spaceΘ .
To deal with the first two problems, we propose a more

general class of distributions than the Gaussian family, center
and scale these distributions differently, and truncate them in a
more sophisticated manner. We begin with the easiest task, which
involves the centering and scaling. Instead of centering the weight
pdf at the samplemean, we center at the posteriormode θ̂ ; instead
of scaling by the sample covariance matrix, we use

�̂ =
1
N

N∑
i=1

(
θ (i) − θ̂

) (
θ (i) − θ̂

)′
where θ (i) denotes the ith draw from the posterior simulator and
N is the sample size. Computing the posterior mode is typically
more expensive than computing the sample mean, but it greatly
improves efficiency of the MHM method. Instead of a family of
Gaussian distributions, we use a family of elliptical distributions.
An elliptical distribution centered at θ̂ and scaled by Ŝ =

√
�̂ has

a density of the form

g (θ) =
0 (k/2)

2π k/2
∣∣∣det (Ŝ)∣∣∣ f (r)rk−1

where k is the dimension of θ , r =

√(
θ − θ̂

)′
�̂−1

(
θ − θ̂

)
,

and f ( ) is any one-dimensional density defined on the positive
reals. We note that the Gaussian distribution is a special case
in the family of elliptical distributions. Since we know how to
sample from the one-dimensional density f ( ), making draws for
an elliptical distribution is straightforward.We simply draw x from
the k-dimensional standard Gaussian distribution and r from the
density f ( ), and define

θ =
r
‖x‖
Ŝx+ θ̂ .

The one-dimensional density f ( ) is chosen in the following
way. For each draw θ (i) from the posterior distribution, let

r (i) =

√(
θ (i) − θ̂

)′
�̂−1

(
θ (i) − θ̂

)
.

From these simulated r (i), we can easily form an estimate of their
cumulative density function. The density f (r) should be chosen
so that its cumulative density closely matches the estimated one.
There are many ways to accomplish this task. For instance, f (r)
could be chosen to be a step function such that the cumulative
density is a piecewise-linear approximation to the estimated
cumulative density.We chose a simpler but efficient technique. Let
the density f (r) have a support on [a, b] and be defined as

f (r) =
vrv−1

bv − av
.

The hyperparameters a, b, and v are chosen as follows. Let c1, c10,
and c90 be chosen so that one percent of the r (i) are less than c1,
ten percent of the r (i) are less than c10, and ninety percent of the
r (i) are less than c90. Denote the density function f (r) with a = 0
by f0(r). The values of b and v are so chosen that the probability of
r < c10 from f0(r) is 0.1 and the probability of r < c90 from f0(r) is
0.9. These choices translate into

v =
log (1/9)
log (c10/c90)

, b =
c90
0.91/v

. (16)

For the reasons elaborated below,we set the value of a to c1 to keep
f (r) bounded above. With the nonzero value of a and the values of
v and b specified in (16), one should note that the probability of
r < cp from f (r)will not be exactly p, where p = 0.1 or p = 0.9.
To deal with the third problem, i.e., the likelihood tending to be

zero in the interior points of the parameter space, we propose a
method to truncate the elliptical distribution. Let U be a positive
number andΘU be the region defined by

ΘU = {θ : m(θ) < U} .
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The weighting function h(θ) is chosen to be an elliptical density
function truncated so that its support isΘU . If qU is the probability
that draws from the elliptical distribution lies in ΘU , then h(θ) is
given by

h (θ) =
χΘU (θ)

qU
g (θ) ,

where χA(θ) is an indicator function that returns one if θ falls in
the set A and zero otherwise. The value of qU can be estimated
from random draws from the elliptical density g(θ). Since draws
from the elliptical distribution are i.i.d., the estimate of qU has a
binomial distribution and its accuracy can be readily obtained. The
lower the truncation value of U , the larger the effective sample
size of a sequence of m(θ (i)), but the less accurate the value of q̂U .
Therefore, there is a balance between having a low cut-off value of
U and having a reasonable estimate of qU .
Because we chose a nonzero value of a for f (r), the weight

function h(θ) is effectively bounded above. Thus, the upper bound
truncation on m(θ) can be easily implemented by a lower bound
truncation on the posterior density kernel itself. Specifically, Let L
be a positive number andΘL be the region defined by

ΘL = {θ : p(YT | θ)p(θ) > L} .

The weighting function h(θ) is chosen to be a truncated elliptical
density such that its support is ΘL. If qL is the probability that
random draws from the elliptical distribution lies in ΘL, h(θ) is
given by

h (θ) =
χΘL (θ)

qL
g (θ) .

Our computational experience indicates that a good choice of L is
a value such that 90% of draws from the posterior distribution lie
inΘL.
To implement our newMHMmethod in practice, we denote the

kernel of the posterior probability density by

k(θ |YT ) = p(YT | θ)p(θ).

The procedure for implementing our new MHM method is as
follows.

(1) Simulate a sequence of posterior draws θ (i) and record the
minimum and maximum values of k(θ |YT ), denoted by kmin
and kmax respectively. Let kmin < L < kmax.

(2) Simulate i.i.d. draws of θ from g(θ) and compute the
proportion of these draws that belong to ΘL. This proportion,
denoted by q̂L, is the estimate of qL. The estimate q̂L has a
binomial distribution and its accuracy depends on the number
of i.i.d. draws from g(θ). If q̂L < 1.0e−06, this estimate
is unreliable because three or four standard deviations will
include the value zero. As a rule of thumb, we keep q̂L ≥
1.0e−05.

(3) For each value of L, estimate the marginal data density
according to (15).

Alternatively, our procedure can be implemented by selecting
a good value of the upper bound U imposed on m(θ). Denote
the minimum and maximum values of m(θ) sampled from the
posterior distribution bymmin andmmax. For each value ofmmin <
U < mmax, compute an estimate of qU and then obtain an estimate
of the marginal data density accordingly.
The importance of choosing the weighting function h(θ) as

close as possible to the possibly non-Gaussian posterior kernel
is illustrated in the empirical exercises in Section 8.7. Equally
important is our procedure of eliminating the extremely high
values of m(θ (i), w(i)) drawn from the posterior distribution. The
development in both areas is crucial to achieving accuracy of the
estimated marginal data density. The success depends on how
much the weighting function h(θ) overlaps with the posterior
kernel k(θ).
The computation of qL provides a practical mechanism to gauge

howmuch of the overlap h(θ) and k(θ) share. For any sequence of
posterior draws θ (i), if we increase the variance of h(θ), the value
of m(θ (i)) tends to decrease and thus the estimated marginal data
density will be artificially blown up, no matter whether the tail
of the distribution represented by h(θ) is truncated or not. If we
discipline the way of changing the variance of h(θ) by insisting
that qL be computed, we will find that the estimate of qL goes to
zero as the variance of h(θ) becomes too large or too small. If we
cannot estimate qL, it means that the two densities represented
by h(θ) and k(θ) have very little overlap and thus the estimated
marginal data density is likely to be misleading.11 In Section 8.7,
we use empirical results to illustrate this important point.
We have thus far discussed our new MHM method using

the constant-parameter model. For Markov-switching models, the
only difference is the treatment of the transitionmatrixQ in which
wj for j = 1, . . . , h is a vector of free parameters as discussed
in Section 4. The transition matrix parameters wj’s are treated
separately from θ because a Dirichlet density as the weighting
function for wj, instead of a truncated power density, is a better
approximation to the posterior density ofwj.
In linear Gaussian state-space models, Gerlach et al. (2000) and

Giordani and Kohn (2008) develop an efficient MCMC algorithm
for sampling st conditional on St−11 , STt+1, YT , ZT , θ , and w. Their
approach does not require that Condition 3 should hold, and
they show it can be adapted to cases where st is not Markov.
Using Gerlach et al. (2000) and Giordani and Kohn’s (2008)
algorithm, one can evaluate the conditional likelihood function
p(YT | ST , θ, w). In this paper, we consider a more restrictive
class of models, but as a result are able to integrate ST out of the
posterior density analytically and to draw ST from its conditional
posterior distribution jointly, instead of one st at a time. The ability
to integrate ST out analytically is crucial to finding the values of θ
and w at the posterior peak. Moreover, in evaluating the marginal
data density, since the posterior distribution of ST is non-Gaussian
and the dimension of ST tends to be extremely large, it is more
difficult to form a good joint weighting function for ST , θ , and w
than to form one, as in our setup, for θ and w alone. In practice,
one may, like Justiniano and Primiceri (2008), use as a weighting
function

h(θ, w, ST ) = h(θ) p(w, ST ), (17)

where p(ST , w) is the prior density of ST and w, as discussed in
Section 4. In Section 8.7, we show that because p(ST , w) can be a
poor approximation to the posterior distribution of ST and w, the
estimate of themarginal data density using thisweighting function
tends to be unreliable.
Kim and Nelson (1999) show how, in a state space model

with switching, to get a reliable estimate of p(YT | θ,w) by
making Condition 3 hold approximately. In the context of Markov-
switching state-space model, Schorfheide (2005) shows that the
estimate of p(YT | θ,w) can be accurately obtained without
expanding the dimension of st drastically. For other models where
Condition 3 holds, such as VARs and the economicmodel of Sargent
et al. (2006), the likelihood p(YT | θ,w) can be evaluated exactly.
With the evaluation of p(YT | θ,w) readily available, one can

11 This newmethod, by truncatingm(θ, w) to ensure reasonable overlap between
the weighting function and the posterior density, is related to the bridge sampling
technique developed by Meng andWong (1996). Similar to our method, the degree
of overlap between the two densities in bridge sampling is crucial to how well that
techniqueworks. For bridge sampling, a goodweighting functionwill certainly help
achieve an accurate estimate of MDD for a given model.
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use the methods developed in the previous section and in this
section to find the estimate of θ and w at the posterior mode and
compute themarginal data density for eachmodel. Thesemethods
are designed to avoid the potential problems associated with
the non-Gaussian posterior distribution. The computer software
package developed for this paper, together with the parallel and
grid computing tools developed by Ramachandran et al. (2007),
makes it computationally feasible to estimate and compare a large
set of models.

8. Application

In this section we apply the general framework to structural
VARs with Markov switching and fit a set of models to the US
data. The empirical results are used to illustrate the difficulties
encountered by the standard MHM method and the remedies
provided by our new method.
Sims and Zha (2006) use a class of structural Markov-switching

VARs to study whether and how US monetary policy has changed
but leave econometric details to an unpublished manuscript (Sims
and Zha, 2004). In this section, we give a complete description
of the prior, the likelihood, and the posterior distribution so that
researchers can use these results in their specific application.

8.1. Structural VARs

If Markov-switching VARs were put in the state-space form,
the existing methods such as those in Kim and Nelson (1999)
and Gerlach et al. (2000) could be applied. This approach, however,
is inefficient because the state vector is unnecessary and the
Kalman filtering can be avoided in the case of VARs. We work
directly on VARs without any state vector.
Consider a class of models of the following form:

y′tA (st) =
ρ∑
i=1

y′t−iAi (st)+ z
′

tC (st)+ ε
′

tΞ
−1 (st) ,

for 1 ≤ t ≤ T , (18)
where
• ρ is a lag length;
• yt is an n-dimensional column vector of endogenous variables
at time t;
• zt is an m-dimensional column vector of exogenous and
deterministic variables at time t;
• εt is an n-dimensional column vector of unobserved random
shocks at time t;
• A (k) is an invertible n × nmatrix and Ai (k) is an n × nmatrix
for 1 ≤ k ≤ h;
• C (k) is anm× nmatrix for 1 ≤ k ≤ h;
• Ξ (k) is an n× n diagonal matrix for 1 ≤ k ≤ h.
The initial conditions y0, . . . , y1−ρ are taken as given. Let

xt
ρn×1
=


yt−1
...
yt−ρ
zt

 and F (st)
(ρn+m)×n

=


A1 (st)
...

Aρ (st)
C (st)

 .
Then (18) can be written in the compact form:

y′tA (st) = x
′

tF (st)+ ε
′

tΞ
−1 (st) , for 1 ≤ t ≤ T . (19)

We introduce the following notation that will be used repeatedly
later in this paper:
A = {A(1), . . . , A(h)} , F = {F(1), . . . , F(h)} ,
Ξ = {Ξ(1), . . . ,Ξ(h)} , θ = {A, F ,Ξ} ,

Yt
t×n
=

y
′

1
...
y′t

 , Zt
t×m
=

z
′

1
...
z ′t

 , St
(t+1)×1

=

s0...
st

 .
We assume that
p (εt | Yt−1, Zt , St , θ, w) = normal (εt | 0n, In) ,
where 0n denotes an n × 1 vector of zeros, In denotes the n × n
identity matrix, and normal (x | µ,Σ) denotes the multivariate
normal distribution of x with mean µ and variance Σ . This
assumption is equivalent to
p (yt | Yt−1, Zt , St , θ, w) = normal (yt | µt (st) ,Σ (st)) , (20)
where w is a vector of free parameters in the transition matrix as
discussed in Section 4,

µt (k) =
(
F (k) A−1 (k)

)′
xt ,

and
Σ (k) =

(
A (k)Ξ 2 (k) A′ (k)

)−1
.

For 1 ≤ k ≤ h, let aj (k) be the jth column of A (k), fj (k) be the
jth column of F (k), and ξj (k) be the jth diagonal element ofΞ (k).
Define

a (k)
n2×1
=

a1 (k)...
an (k)

 , f (k)
(ρn+m)n×1

=

f1 (k)...
fn (k)

 , and

ξ (k)
n×1
=

ξ1 (k)...
ξn (k)

 .
For expositional clarity, we focus on the composite Markov

process st = (s1t s2t) where s1t and s2t are independent regime
variables, although the analytical results for more complicated
Markov processes can be derived similarly. We let aj and fj depend
on s1t and ξj depend on s2t . It follows from (20) that the conditional
likelihood function p (yt | Yt−1, Zt , St , θ, w) is equal to

|A (s1t)|
n∏
j=1

∣∣ξj (s2t)∣∣ exp(−ξ 2j (s2t)2

(
y′taj (s1t)− x

′

t fj (s1t)
)2)

.

(21)
Given (21), the overall likelihood of YT can be formed by following
(10).

8.2. Restrictions on time variation

If we let all parameters vary across regimes, the number of
free parameters in the model becomes impractically high when
the system of equations is large or the lag length is long. For a
typical quarterly model with 5 lags and 6 endogenous variables,
for example, the number of parameters in F(s1t) is of order 180 for
each regime. Given the post-war macroeconomic data, however,
it is not uncommon to have some regimes lasting for only a few
years and thus the number of relevant observations is far less than
180 quarters. It is therefore essential to simplify the model by
restricting the degree of time variation in the model’s parameters.
Such a restriction entails complexity and difficulties that have not
been dealt with in the simultaneous-equation literature.
To begin with, we rewrite F as

F(s1t)
m×n
= G(s1t)

m×n
+ S̄
m×n
A(s1t)
n×n

. (22)

where

S̄ =

[
In
0

(m−n)×n

]
.

We let G be a collection of all G(k) for k = 1, . . . , h1. If the
prior distribution on G(s1t) has mean zero, the specification of S̄
is consistent with the reduced-form random walk feature implied
by the existing Bayesian VAR models (Sims and Zha, 1998). This
type of prior tends to imply that greater persistence (in the
sense of a tighter concentration of the prior on the random walk)
is associated with smaller disturbance variances. This feature is
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reasonable, as it is consistent with the idea that beliefs about the
unconditional variance of the data are not highly correlated with
beliefs about the degree of persistence in the data.
Let gj(k) be the jth column of G(k). The time-variation

restrictions imposed on gj(k) can be generally expressed by two
components, one being time varying and the other being constant
across regimes. Denote the first component by the rg,j × 1 vector
gδj(k) and the second component by the h1rg,j×1 vector gψj , where
the subscripts δj (k) andψj will be discussed further in Section 8.3.
We express gj (k) for k = 1, . . . , h1 in the form

diag
([
gj(1)′ . . . gj(h1)′

]′)
= diag

([
g ′δj(1) . . . g ′δj(h1)

]′)
diag

(
gψj
)
, (23)

where diag(x) is the diagonal matrix with the diagonal being the
column vector x. The long vector gψj is formed by stacking h1 sub-
vectors and the kth sub-vector corresponds to the parameters in
the kth regime.
In this paper, we focus on the following three cases of restricted

time variations in the jth equation for aj(s1t) and gj(s1t) where
j ∈ {1, . . . , n}, although our general method is capable of dealing
with other time variation cases.

aj(s1t ) ξj(s2t ), gij,`(s1t ) ξj(s2t ), cj(s1t ) ξj(s2t )

=


aj, gij,`, cj Case I
aj ξj(s2t ), gij,` ξj(s2t ), cj ξj(s2t ) Case II
aj(s1t ) ξj(s2t ), gψij,` gδij(s1t ) ξj(s2t ), cj(s1t ) ξj(s2t ) Case III,

(24)

where gij, `(s1t) is the element of gj(s1t) for the ith variable at the
`th lag and cj(s1t) is a vector of parameters corresponding to the
exogenous variable vector zt in equation j. The parameter gψij, ` is
the element of gψj for the ith variable at the `th lag in any regime;
it is constant across regimes. The parameter gδij(s1t ) is the element
of gδj(s1t ) for the ith variable in regime s1t at any lag. Thus, when
the regime s1t changes, gδij(s1t ) changes with variables but does not
vary across lags. The variability across variables when the regime
changes is necessary to allow long run responses to vary across
regimes, while the restriction on the time variation across lags
is essential to prevent over-parameterization. The parameters aj,
gij, `, and cj without the symbol (s1t) mean that these parameters
are independent of regime (i.e., constant across time).
In this setup, we include cj(k) in the stacked column vector

gψj . This parameterization of grouping cj(k) in gψj preserves the
prior correlations between cj(k) and the other lagged coefficients
as implied by the Sims and Zha (1998) dummy-observation prior,
an important part of the prior specification. Note that the other
elements of gψj are restricted to be independent of regime.
Case I represents a traditional constant-parameter VAR equa-

tion, which has been dealt with extensively in the literature and
thus will not be a focal discussion of this paper. Case II repre-
sents a structural equation with only shock variances changing
regime. In this case, ξj(s2t)measures the volatility of the shock pro-
cess in the jth structural equation. Case III represents a structural
equation with both time-varying coefficients and heteroscedastic
disturbances.

8.3. Identifying restrictions

It is well known that the model (19) would be unidentified
without further identifying restrictions. We follow Waggoner and
Zha (2003a) and apply linear restrictions on A and F in the form of

Rj

[
aj
fj

]
= 0, (25)

where Rj is an (n+ ρn+m) × (n+ ρn+m) and is not of full
rank. This class of restrictions is general enough to encompass
restrictions used in the VAR literature (Rudebusch and Svensson,
1999; George et al., 2008); it can be used to deal with over-
parameterization. It follows from (25) that
aj (k) = Ujbj (k) , (26)

fj (k) = Vjgj (k)−WjUjbj (k) , (27)
where Uj is an n × qj matrix with orthonormal columns, Vj is
a (ρp+m) × rj matrix with orthonormal columns, and Wj is a
(ρp+m) × n matrix (see Appendix D for details). To make (27)
agreeable to the random walk form given by (22), the restrictions
on the first-lag coefficient matrix A1 must be a subset of those on
the contemporaneous coefficientmatrix A0, and in this casewe can
takeWj to be S̄.
From (21), (26) and (27), one can rewrite the likelihood as

p (yt | Yt−1, Zt , St , θ, w)

= |A (s1t )|

[
n∏
j=1

∣∣ξj (s2t )∣∣ exp(− ξ 2j (s2t )2

((
y′t + x

′

tWj
)
Ujbj (s1t )− x′tVjgj (s1t )

)2)]
. (28)

In addition to the time-variation restrictions (24), the lagged
coefficient vector gj(k) for k ∈ {1, . . . , h1} may be further
restricted. Specifically, one may impose linear restrictions directly
on gδj(k) and gψj through the affine transformation fromRrδ,j toRrg,j

gδj(k) = 1jδj (k)+ δ̄j (29)

and the affine transformation from Rrψ,j to Rh1rg,j

gψj = Ψjψj, (30)

where1j is an rg,j× rδ,j matrix, Ψj is an h1rg,j× rψ,j matrix, δ̄j is an
rg,j×1 vector, δj (k) is an rδ,j×1 vector, andψj is an rψ,j×1 vector.
The vectors δj (k) and ψj are the free parameters to be estimated,
while the other vectors andmatrices on the right hand sides of (29)
and (30) are given by the linear restrictions. We assume without
loss of generality that1j andΨj have orthonormal columns so that
both1′j1j and Ψ

′

j Ψj are identity matrices.
Consider the most common situation in which the constant

term is the only exogenous variable. As implied by (24), rδ,j is
much smaller than rg,j so that the time varying component has
a small dimension. Similarly, the dimension rψ,j is much smaller
than h1rg,j. For Case II, we set1j = 0 and δ̄j = 1 where 1 denotes
a vector of ones. In practice, therefore, there is no free parameter
vector δj (k) to deal with. All the sub-vectors in gψj that correspond
to different regimes are the same. Thus, the dimension rψ,j is no
greater than rg,j. For Case III, we set

δ̄j =

[
0
nρ×1
1

]
,

where the last element corresponds to the constant term in the
jth equation. The first nρ elements in the kth sub-vector of gψj are
restricted to be the same as those elements in any other sub-vector.

8.4. The prior

Webeginwith the prior imposed directly on aj(k) and gψj . From
this prior we derive the prior on the free parameters bj(k) and ψj,
using the linear restrictions represented by (26) and (30).
The prior distributions of aj(k) and gψj take the Gaussian form:

p(aj(k)) = normal
(
aj(k) | 0, Σ̄aj

)
, (31)

p(gψj) = normal
(
gψj | 0, Σ̃gψj

)
, (32)

for k = 1, . . . , h1 and j = 1, . . . , n, where Σ̃gψj = Ih1 ⊗ Σ̃g .
12

The prior covariance matrices Σ̄aj and Σ̃g are the same as the

12 The notation Σ̄g will be introduced later after an additional prior component is
incorporated.



C.A. Sims et al. / Journal of Econometrics 146 (2008) 255–274 267

where

Σ̄bj =

(
U ′j Σ̄

−1
aj Uj

)−1
,

Σ̄ψj =

(
Ψ ′j Σ̄

−1
gψj
Ψj

)−1
.

It has been shown that this kind of prior makes it possible
to estimate a very large VAR (Leeper et al., 1996; Robertson and
Tallman, 1999; Banbura et al., 2007). Unlike the reduced-form
VARs studied by George et al. (2008), the prior imposed directly on
the structural parameters A helps avoid the curse of dimensionality
as the size of a VAR increases (see Sims and Zha (1998) for details).
To complete the section, we specify the prior distributions for

δj(k) and ξ 2j (k) as follows. The prior distribution of δj(k) is assumed
to be normal:

p(δj(k)) = normal
(
δj(k) | 0, Σ̄δj(k)

)
, (38)

where Σ̄δj(k) = σ
2
δ Irδ,j and Irδ,j is the rδ,j × rδ,j identity matrix. The

prior distribution of ξ 2j (k) is assumed to have the gamma density
function:

p(ξ 2j (k)) = gamma
(
ξ 2j (k) | ᾱj, β̄j

)
, (39)

where

gamma(x | α, β) =
1

0(α)
βαxα−1e−βx.

8.5. The posterior distribution

Given the likelihood function (28) and theprior density function
(36)–(39), our objective is to obtain the conditional posterior
density function p(θ | YT , ZT , ST , w) by sampling alternately from
the following conditional posterior distributions:

p(bj(k) | YT , ZT , ST ,G,Ξ , w, bi(k)), (40)

p(δj(k) | YT , ZT , ST , A,Ξ , w,ψj), (41)

p(ψj | YT , ZT , ST , A,Ξ , w, δj(k)), (42)

p(ξ 2j (k) | YT , ZT , ST , A,G, w), (43)

where i 6= j and i = 1, . . . , n. The first posterior density (40)
is not of any standard form. To sample from this distribution,
the Metropolis–Hastings algorithm will be employed. The second
and third posterior distributions represented by (41) and (42)
are multivariate normal. The fourth posterior density (43) has a
gamma distribution. The expressions for these posterior densities
are algebraically complicated and are given in Appendix E.

8.6. Normalization

To obtain the accurate posterior distributions of θ or a function
of θ such as an impulse response, one must normalize signs
of structural equations. Otherwise, the posterior distribution
will be symmetric with multiple modes, making statistical
inference meaningless. Such normalization is also essential to
achieving efficiency in evaluating the marginal data density for
model comparison. We choose Waggoner and Zha’s (2003b)
normalization rule to determine the signs of columns of A(k)
and F(k) for any given k ∈ {1, . . . , h1}. Since our original prior
is un-normalized and symmetric around the origin, this prior
density must be multiplied by 2n when the marginal data density
is estimated with MCMC draws that are normalized by the rule
proposed by Waggoner and Zha (2003b).
There is scale normalization on δj(k1) and ξj(k2). For this kind

of normalization, we impose the restrictions δj(k1) = 1rδ,j×1 and
ξj(k2) = 1 for j ∈ {1, . . . , n}, k1 ∈ {1, . . . , h1}, and k2 ∈
prior covariance matrices specified by Sims and Zha (1998) for
the contemporaneous and lagged coefficients in the constant-
parameter VARmodel. Because these prior covariancematrices are
the same across k, aj(k) has exactly the same prior distribution
for different values of k so that k is essentially irrelevant for this
prior.13 In other words, our prior is symmetric across regimes, for
a priori knowledge of how they should differ is difficult to obtain
through the prior distribution of this kind.
Following Sims and Zha (1998), we incorporate into the

prior the n + 1 ‘‘dummy observations’’ formed from the
initial observations as an additional part of the prior. These
dummy observations, used as an additional prior component,
express widely-held beliefs in unit roots and cointegration in
macroeconomic series and play an indispensable role in improving
out-of-sample forecast performance. Let Yd be an (n+1)×nmatrix
of dummy observations on the left hand side of system (19) and Xd
be an (n+1)×mmatrix of dummy observations on the right hand
side such that

YdA(k) = Xd
(
Gψ + S̄A(k)

)
+ Ẽd, (33)

where Gψ is a (pn + m) × n matrix formed from gψj and Ẽd is an
(n+ 1)× nmatrix of standard normal random variables. If we add
the diffuse prior

p (vec(A(k))) ∝ |A(k)|−(n+1)

to correct for the degrees of freedom in the overall prior of A(k), it
can be shown that combining the dummy equations (33) and the
normal prior (31) and (32) leads to the following overall prior14:

p(aj(k)) = normal
(
aj(k) | 0, Σ̄aj

)
, (34)

p(gψj) = normal
(
gψj | 0, Σ̄gψj

)
, (35)

where Σ̄gψj = Ih1 ⊗ Σ̄g and

Σ̄g =
(
X ′dXd + Σ̃

−1
g

)−1
.

Given the linear restrictions (26) and (30), one can derive from
(34) and (35) that the implied prior distribution for bj(k) and ψj is

p(bj(k)) = normal
(
bj(k) | 0, Σ̄bj

)
, (36)

p(ψj) = normal
(
ψj| 0, Σ̄ψj

)
, (37)

13 In our setup, the regime variable s1t for A(s1t ) and the regime variable s2t for
Ξ(s2t ) are independently treated. In Sims and Zha (2006), the two regime variables
are the same. For the Case II model, therefore, aj(k) are restricted to be the same for
all k’s under the Sims and Zha setup andwe denote this vector by a∗j . This restriction
implies that the prior covariance matrix for a∗j differs from Σ̄aj . To see this point,
consider two standard normal random variables x1 and x2 . With the restriction
x1 = x2 , one can show that[
x1 x2

]′
=
[
1/
√
2 1/

√
2
]′
x∗,

where x∗ is normally distributed withmean 0 and variance 2. Thus, the distribution
of x∗ is different from that of x1 or x2 . By analogy, aj(1) and aj(2) can be thought
as x1 and x2; and a∗j as x

∗ . For the examples we have studied, it turns out that
the prior under our current setup gives a higher marginal data density with the
hyperparameter values suggested by Sims and Zha (1998) and Robertson and
Tallman (1999, 2001).
14 The proof follows directly from the fact that

(X ′dXd + Σ̄
−1
gψj
)−1(X ′dYd + Σ̄

−1
gψj
S̄) = S̄,

Y ′dYd + Σ̄
−1
aj + S̄

′Σ̄−1gψj
S̄ −Σ−10j = Σ̄

−1
aj ,

where

Σ
−1
0j = (Y

′

dXd + S̄
′Σ̃−1gψj

)(X ′dXd + Σ̃
−1
gψj
)−1(X ′dYd + Σ̃

−1
gψj
S̄).
















